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Abstract: The article is concerned with the analysis of the problem for a concentrated line load moving at a constant speed along the sur-
face of a pre-stressed, incompressible, isotropic elastic half-space, within the framework of the plane-strain assumption. The focus is on 
the near-critical regimes, when the speed of the load is close to that of the surface wave. Both steady-state and transient regimes are con-
sidered. Implementation of the hyperbolic–elliptic asymptotic formulation for the surface wave field allows explicit approximate solution for 
displacement components expressed in terms of the elementary functions, highlighting the resonant nature of the surface wave. Numerical 
illustrations of the solutions are presented for several material models. 
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1. INTRODUCTION 

Moving loads on an elastic half-space have been the subject 
of numerous investigations, motivated by important engineering 
applications related to ground vibrations caused by moving 
transport vehicles; for example, refer to studies by Krylov (1996) 
and Cao et al. (2012). In the classical contribution of Cole and 
Huth (1958), a steady-state solution for an elastic half-plane sub-
ject to a moving load was obtained. It is worth mentioning that the 
resonant nature of the Rayleigh wave may have been noticed in 
this early article, see also the study by Goldstein (1965). A sub-
stantial part of consideration for moving loads is focused on 
steady-state regimes, refer e.g., recent results for porous aniso-
tropic half-space by Wang et al. (2021) and the study for a ther-
moelastic half-space with double porosity by Kumar and Vohra 
(2020). We also note the articles dealing with time-harmonic 
moving loads; refer to studies by Lefeuve-Mesgouez et al. (2000) 
and Sun et al. (2019), and interesting aspects of transition when 
surface load moves over the interface of two elastic materials; 
refer to the study by van Dalen et al. (2015). There are relatively 
few treatments of transient modes in moving load problems, in-
cluding early works (Payton, 1967; Gakenheimer and Miklowitz, 
1969) and also more recent contributions (de Hoop, 2002; 
Kaplunov et al., 2010b). It is known that an analysis of transient 
dynamics is generally non-trivial, often requiring a numerical 
approach; refer to studies by Bratov (2011) and Smirnov et al. 
(2012). We also mention active studies of moving loads on elastic 
structures, for example refer to a textbook (Fryba, 1999) and 
references therein, as well as recent works in studies by Dimi-
trovová (2017), Wang et al. (2020) and Lu et al. (2020). 

This article relies on a recent approach to near-resonant re-
gimes of the moving load on an elastic half-space, originating from 

the hyperbolic–elliptic models for surface waves; refer to the study 
by Kaplunov and Prikazchikov (2017). Models consist of elliptic 
equations associated with decay into the interior, along with hy-
perbolic equations on the surface governing wave propagation. 
This methodology has allowed a number of explicit approximate 
solutions of moving load problems; refer to studies by Kaplunov et 
al. (2010a), Kaplunov et al. (2013), Erbaş et al. (2017), and Ege et 
al. (2017). The advantage of this approach is related to the repre-
sentation of the surface wave field in terms of a single harmonic 
function, providing reduction of the vector problem of elastody-
namics to a scalar formulation. Recent developments in this area 
include the incorporation of effects of anisotropy (Fu et al., 2020), 
a refined second-order model (Wootton et al., 2020), explicit 
formulations for seismic meta-surfaces in the form of an array of 
resonators attached to the surface (Ege et al., 2018; Wootton et 
al., 2019) and formulations for surface wave on a coated half-
space with non-classical boundary conditions (Kaplunov et al., 
2019). 

The hyperbolic–elliptic plane-strain model for surface wave on 
a pre-stressed incompressible elastic half-space has been derived 
in the study by Khajiyeva et al. (2018), allowing a scalar formula-
tion for the surface wave field induced by prescribed surface 
stresses. In this work, we implement these results to analyse the 
near-critical regimes for the line force moving at a constant speed 
along the surface. Both steady-state and transient problems are 
considered. As a result, explicit expressions for the displacement 
field are obtained in terms of elementary functions, confirming the 
resonant nature of surface wave speed. In case of transient dis-
placements, distinction between the sub-critical, super-critical and 
resonant regimes follows immediately from the analysis on the 
surface. Then, using Poisson’s formula, solution is restored over 
the interior. Consideration of large time limit allows approxima-
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tions for the components of rigid body motion. The obtained re-
sults are illustrated numerically for several material models, in-
cluding the neo-Hookean, Gent, and Gent–Gent strain–energy 
functions. 

2. STATEMENT OF THE PROBLEM 

Consider a homogeneous incompressible elastic body with an 

initial state 𝐵0 in the domain 𝑋2 ≥ 0. Under the action of a ho-
mogeneous static deformation 𝑥𝑖 = 𝑥𝑖(𝑋𝐴), the body transforms 

to a finitely deformed equilibrium state 𝐵𝑒, which corresponds to a 

half-space 𝑋2 ≥ 0, and after superimposing infinitesimal time-

dependent motion 𝑢𝑖(𝑥𝑗 , 𝑡), it moves to the current state 𝐵𝑡  with 

the position vector 𝑥𝑖̅(𝑋𝐴, 𝑡) given by: 

𝑥𝑖̅(𝑋𝐴, 𝑡) = 𝑥𝑖(𝑋𝐴) + 𝑢𝑖(𝑥𝑗 , 𝑡). (1) 

The equations provided below address the plane-strain prob-
lem, for which 𝑢3 = 0 and 𝑢1 = 𝑢1(𝑥1, 𝑥2, 𝑡), 𝑢2 =
𝑢2(𝑥1, 𝑥2, 𝑡), giving the following coupled equations of incremen-
tal motion: 

𝐴1111
𝜕2𝑢1

𝜕𝑥1
2 + (𝐴1122 + 𝐴1221)

𝜕2𝑢2

𝜕𝑥1𝜕𝑥2
+ 𝐴2121

𝜕2𝑢1

𝜕𝑥2
2 −

𝜕𝑝𝑡

𝜕𝑥1
=

𝜌
𝜕2𝑢1

𝜕𝑡2
,

 

𝐴1212
𝜕2𝑢2

𝜕𝑥1
2 + (𝐴1122 + 𝐴1221)

𝜕2𝑢1

𝜕𝑥1𝜕𝑥2
+ 𝐴2222

𝜕2𝑢2

𝜕𝑥2
2 −

𝜕𝑝𝑡

𝜕𝑥2
=

𝜌
𝜕2𝑢2

𝜕𝑡2
, (2) 

where 𝐴𝑖𝑗𝑘𝑙  are the components of the fourth-order elasticity 

tensor (Ogden, 1984), 𝜌 is mass density and 𝑝𝑡  is the time-
dependent incremental component of pressure associated with 
the incompressibility constraint whose linearised measure is given 
by: 

𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢2

𝜕𝑥2
= 0. (3) 

In this article, we focus on studying the effect of a vertical 
load, represented as a concentrated line force moving at a con-

stant speed 𝑣, on the pre-stressed elastic half-space (refer Fig. 
1). Then, the boundary conditions on the surface 𝑥2 = 0 are 
given in the following form: 

𝐴2121
𝜕𝑢1

𝜕𝑥2
+ (𝐴1221 + 𝑝̅)

𝜕𝑢2

𝜕𝑥1
= 0,  

𝐴1122
𝜕𝑢1

𝜕𝑥1
+ (𝐴2222 + 𝑝̅)

𝜕𝑢2

𝜕𝑥2
− 𝑝𝑡 = 𝑃0𝛿(𝑥1 − 𝑣𝑡), (4) 

where 𝑝̅ = 𝐴2121 − 𝐴1221 − 𝜎2 is static pressure in the equilib-

rium state 𝐵𝑒, 𝜎2 is the normal Cauchy stress component, 𝛿 is 
the Dirac delta function and 𝑃0 is the amplitude. 

 
Fig. 1. Pre-stressed elastic half-space under the effect of a moving load 

We consider the near-resonant regime, when the speed of the 
moving load is close to surface wave speed, thus the contribution 
of surface wave dominates over that of the bulk waves. 

Introducing the auxiliary harmonic function 𝜓1 [see Khajiyeva 
et al. (2018) for details], the displacements may be expressed as 
follows: 

𝑢1(𝑥1, 𝑥2, 𝑡) =
𝜕𝜓1(𝑥1,𝑘1𝑥2,𝑡)

𝜕𝑥2
+ 𝜗

𝜕𝜓1(𝑥1,𝑘2𝑥2,𝑡)

𝜕𝑥2
,  

𝑢2(𝑥1, 𝑥2, 𝑡) = −
𝜕𝜓1(𝑥1,𝑘1𝑥2,𝑡)

𝜕𝑥1
− 𝜗

𝜕𝜓1(𝑥1,𝑘2𝑥2,𝑡)

𝜕𝑥1
, (5) 

where 𝜗 =
𝛾(𝑘1

2+1)−𝜎2

𝛾(𝑘2
2+1)−𝜎2

, and 𝑘1, 𝑘2 are related by: 

𝑘1
2 + 𝑘2

2 =
2𝛽−𝜌𝑐𝑅

2

𝛾
,    𝑘1

2𝑘2
2 =

𝛼−𝜌𝑐𝑅
2

𝛾
, (6) 

With: 

𝛼 = 𝐴1212,    2𝛽 = 𝐴1111 + 𝐴2222 − 2(𝐴1122 + 𝐴1221), 

𝛾 = 𝐴2121,  

and 𝑐𝑅  denoting surface wave speed, being the solution of 

𝛾(𝛼 − 𝜌𝑐𝑅
2) + (2𝛽 + 2𝛾 − 2𝜎2 − 𝜌𝑐𝑅

2)√𝛾(𝛼 − 𝜌𝑐𝑅
2) =

(𝛾 − 𝜎2)
2,  

refer to the study by Dowaikh and Ogden (1990). 
The approximate formulation of the original problem in elastici-

ty as defined in Eqs (2)–(4), oriented towards the surface wave 
field, has been developed in the study by Khajiyeva et al. (2018), 
reducing the vector problem in elasticity to a scalar problem for 
the elliptic equation in respect of the potential 𝜓1. The methodol-
ogy of the derivation relies on the slow-time perturbation proce-
dure, extending the previous results for isotropic elasticity; see 
Kaplunov and Prikazchikov (2017). The resulting hyperbolic–
elliptic model for surface wave field in a pre-stressed incompress-
ible elastic half-space excited by the vertical surface loading 
𝑓2 = 𝑓2(𝑥1, 𝑡) is formulated in terms of the potential 𝜓1 as an 
elliptic equation: 

𝜕2𝜓1

𝜕𝑥2
2 + 𝑘1

2 𝜕
2𝜓1

𝜕𝑥1
2 = 0, (7) 

which is subject to the boundary condition on the surface, given 
by a hyperbolic equation [compare with formula (39) in the study 
by Khajiyeva et al. (2018)] 

𝜕2𝜓1

𝜕𝑥1
2 −

1

𝑐𝑅
2

𝜕2𝜓1

𝜕𝑡2
= −

2𝑎11𝑓2
∗

𝑐𝑅(𝑎21𝑏1−𝑎11𝑏2)
   at 𝑥2 = 0, (8) 

where:  
𝑎11 = 𝛾(𝑘1

2 + 1) − 𝜎2,     𝑎21
= 𝑘1(2𝛽 − 𝜌𝑐𝑅

2 − 𝜎2 − 𝛾(𝑘1
2 − 1)), 

𝑓2 = 𝑃0𝛿(𝑥1 − 𝑣𝑡),    𝑏1 =
2𝜌𝑐𝑅

𝑘2
2 − 𝑘1

2 (𝑘1
2 − 1 − 𝜗(𝑘2

2 − 1)), 

𝑏2 = 𝑔1 + 𝜗𝑔2, 

𝑔𝑗 =
𝜌𝑐𝑅(𝑘𝑗

2 − 1)

𝛾𝑘𝑗(𝑘𝑚
2 − 𝑘𝑗

2)
(2𝛽 − 𝜌𝑐𝑅

2 − 𝜎2 + 𝛾(1 − 3𝑘𝑗
2))

− 2𝑘𝑗𝜌𝑐𝑅 , 

𝑗, 𝑚 = 1,2;   𝑗 ≠ 𝑚  and the asterisk denotes the Hilbert integral 
transform. In the forthcoming section, we adapt this asymptotic 
formulation (7) and (8) to the considered moving load problem. 
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3. EXPLICIT STEADY-STATE SOLUTION  
FOR THE NEAR-RESONANT REGIME 

For the sake of convenience, the asymptotic models (7) and 
(8) can be expressed in terms of the harmonic conjugate of 𝜓1. 
The elliptic Eq. (7) becomes: 

𝜕2𝜓1
∗

𝜕𝑥2
2 + 𝑘1

2 𝜕
2𝜓1

∗

𝜕𝑥1
2 = 0, (9) 

and the hyperbolic Eq. (8) is rewritten as: 

𝜕2𝜓1
∗

𝜕𝑥1
2 −

1

𝑐𝑅
2

𝜕2𝜓1
∗

𝜕𝑡2
= 𝑃1𝛿(𝑥1 − 𝑣𝑡)   at 𝑥2 = 0, (10) 

where 𝑃1 =
2𝑎11𝑃0

𝑐𝑅(𝑎21𝑏1−𝑎11𝑏2)
. 

Now we consider the steady-state regime and introduce a 
moving coordinate, which can be represented as follows: 

𝜉 = 𝑥1 − 𝑣𝑡. (11) 

Then, Eq. (10) takes the form— 

(1 −
𝑣2

𝑐𝑅
2)

𝜕2𝜓1
∗

𝜕𝜉2
= 𝑃1𝛿(𝜉). (12) 

On integrating the latter, we have— 

𝜕𝜓1
∗

𝜕𝜉
= −

𝑐𝑅
2𝑃1

𝑣−𝑣+
(𝐻(𝜉) −

1

2
), (13) 

where the constant of integration is chosen according to the sym-
metry rule as it cannot be determined by considering the steady-

state regime (Kaplunov and Prikazchikov, 2017), and 𝑣± = 𝑣 ±
𝑐𝑅 . 

Hence, restoring the solution into the interior, we obtain— 

𝜕𝜓1
∗(𝜉,𝑘1𝑥2)

𝜕𝜉
= −

𝑐𝑅
2𝑃1

𝜋𝑣−𝑣+
tan−1

𝜉

𝑘1𝑥2
, (14) 

from which the harmonic conjugate function can be found as— 

𝜕𝜓1(𝜉,𝑘1𝑥2)

𝜕𝜉
=

𝑐𝑅
2𝑃1

2𝜋𝑣−𝑣+
ln(𝜉2 + 𝑘1

2𝑥2
2). (15) 

Thus, on substituting (14) and (15) into (5), the displacements 

𝑢1 and 𝑢2 are given explicitly by: 

𝑢1 =
𝑐𝑅
2𝑃1

𝜋𝑣−𝑣+
[𝑘1tan

−1 𝜉

𝑘1𝑥2
+ 𝜗𝑘2tan

−1 𝜉

𝑘2𝑥2
],  

𝑢2 = −
𝑐𝑅
2𝑃1

2𝜋𝑣−𝑣+
[ln(𝜉2 + 𝑘1

2𝑥2
2) + 𝜗ln(𝜉2 + 𝑘2

2𝑥2
2)] (16) 

The resonant nature of surface wave speed is clearly ob-
served from the solution available in Eq. (16). 

4. TRANSIENT MOVING LOAD PROBLEM 

Now let us consider a transient problem. Within this article, we 
rely on the approach presented in the study by Kaplunov et al. 
(2010a), with the solution of the hyperbolic Eq. (10) written as a 
convolution of the right-hand side with the fundamental solution, 
namely: 

𝜓1
∗(𝜉, 0, 𝑡) =

𝑐𝑅𝑃1

2
∫ (𝐻(𝜉 + 𝑣−𝑟) − 𝐻(𝜉 + 𝑣+𝑟))𝑑𝑟
𝑡

0
, (17) 

where 𝐻 is the Heaviside function. 
The form of the integral in (17) motivates separate study of 

three regimes, including the sub-Rayleigh (𝑣 < 𝑐𝑅), super-

Rayleigh (𝑣 > 𝑐𝑅) and the resonant one (𝑣 = 𝑐𝑅). 

Introducing 𝜑 = −
2

𝑐𝑅𝑃1
𝜓1
∗ for convenience, we obtain for 

a) sub-Rayleigh regime (𝑣 < 𝑐𝑅): 

𝜑(𝜉, 0, 𝑡) =

{
 
 

 
 
𝜉

𝑣−
+ 𝑡,   0 ≤ 𝜉 < −𝑣−𝑡,

𝜉

𝑣+
+ 𝑡,   −𝑣+𝑡 < 𝜉 < 0,

0,   otherwise

       (18) 

b) super-Rayleigh regime (𝑣 > 𝑐𝑅): 

𝜑(𝜉, 0, 𝑡) =

{
 
 

 
 𝜉 (

1

𝑣+
−

1

𝑣−
) ,   −𝑣−𝑡 ≤ 𝜉 ≤ 0,

𝜉

𝑣+
+ 𝑡,   −𝑣+𝑡 < 𝜉 < −𝑣−𝑡,

0,   otherwise

 (19) 

c) resonant regime (𝑣 = 𝑐𝑅): 

𝜑(𝜉, 0, 𝑡) = {

𝜉

2𝑐𝑅
+ 𝑡,   − 2𝑐𝑅𝑡 ≤ 𝜉 ≤ 0,

0,   otherwise
 (20) 

Now, once the solution has been found on the surface 𝑥2 = 0  

in terms of the function 𝜑, we can conduct the analysis with 
depth, i.e. restore the solution over the interior of the half-space 

𝑥2 > 0. Using the elliptic Eq. (9) and applying Poisson’s formula, 

the potential 𝜓1
∗ is expressed as 

 
 

 * *1 2
1 1 2 12 2 2

1 2

1
, , ,0, .

k x
k x t r t dr

r k x
  

 






 



 (21) 
Let us once again present the results in sequence for all three 

considered regimes. 

4.1. Sub-Rayleigh regime 

On substituting Eq. (18) into Eq. (21), after integration we get 

𝜓1
∗(𝜉, 𝑘1𝑥2, 𝑡) =

1

𝜋
∫

𝑘1𝑥2

(𝑟−𝜉)2+𝑘1
2𝑥2

2𝜓1
∗(𝑟, 0, 𝑡)𝑑𝑟

+∞

−∞
. (21) 

where 

ℎ(𝜉, 𝑘1𝑥2, 𝜉𝑖) =
𝑘1𝑥2

2
ln

(𝜉−𝜉𝑖)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 + 𝜉 tan−1
𝜉

𝑘1𝑥2
−(𝜉 −

𝜉𝑖) tan
−1 𝜉−𝜉𝑖

𝑘1𝑥2
  (𝑖 = 1,2),  

and 𝜉1 = −𝑣−𝑡,   𝜉2 = −𝑣+𝑡.  

Displacements (5) in terms of 𝜓1
∗ take the following form 

𝑢1 = −𝑘1
𝜕𝜓1

∗ (𝜉,𝑘1𝑥2,𝑡)

𝜕𝜉
− 𝜗𝑘2

𝜕𝜓1
∗(𝜉,𝑘2𝑥2,𝑡)

𝜕𝜉
,  

𝑢2 = −
1

𝑘1

𝜕𝜓1
∗(𝜉,𝑘1𝑥2,𝑡)

𝜕𝑥2
−

𝜗

𝑘2

𝜕𝜓1
∗(𝜉,𝑘2𝑥2,𝑡)

𝜕𝑥2
. (23) 

Then, on substituting Eq. (22) into Eq. (23), the transient dis-
placements are written explicitly as: 

𝑢1 =
𝑐𝑅
2𝑃1

𝜋𝑣−𝑣+
[𝑘1tan

−1 𝜉

𝑘1𝑥2
+ 𝜗 𝑘2tan

−1 𝜉

𝑘2𝑥2
] +

𝑐𝑅𝑃1

2𝜋𝑣+
[𝑘1tan

−1 𝜉−𝜉2

𝑘1𝑥2
+ 𝜗 𝑘2tan

−1 𝜉−𝜉2

𝑘2𝑥2
] −

𝑐𝑅𝑃1

2𝜋𝑣−
[𝑘1tan

−1 𝜉−𝜉1

𝑘1𝑥2
+ 𝜗 𝑘2tan

−1 𝜉−𝜉1

𝑘2𝑥2
], (24) 
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𝑢2 = −
𝑐𝑅𝑃1

4𝜋𝑣+
[ln

(𝜉−𝜉2)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 +𝜗ln
(𝜉−𝜉2)

2+𝑘2
2𝑥2

2

𝜉2+𝑘2
2𝑥2

2 ] +

𝑐𝑅𝑃1

4𝜋𝑣−
[ln

(𝜉−𝜉1)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 +𝜗ln
(𝜉−𝜉1)

2+𝑘2
2𝑥2

2

𝜉2+𝑘2
2𝑥2

2 ]. (25) 

We represent Eq. (24) as: 

𝑢1 = 𝑢1
𝑠𝑡(𝜉, 𝑥2) + 𝑢1

𝑟0, (26) 

where 𝑢1
𝑠𝑡 corresponds to the steady-state displacement (161), 

and: 

𝑢1
𝑟0 =

𝑐𝑅𝑃1𝑣(𝑘1+𝜗𝑘2)

2𝑣−𝑣+
 (27) 

is associated with the rigid body motion of the half-space, deter-
mined from the analysis of the limiting behaviour of displacements 

as 𝑡 → ∞. 
Similarly, equation (25) can be reduced to 

𝑢2 = 𝑢2
𝑠𝑡(𝜉, 𝑥2) + 𝑢2

𝑟0 + 𝑢2
𝑟1ln𝑡, (28) 

where 𝑢2
𝑠𝑡 corresponds to formula (162), and 

𝑢2
𝑟0 = −

𝑐𝑅𝑃1(1+𝜗)

2𝜋
[
ln𝑣+

𝑣+
−

ln|𝑣−|

𝑣−
],  

𝑢2
𝑟1 =

𝑐𝑅
2𝑃1(1+𝜗)

𝜋𝑣−𝑣+
. (29) 

Thus, explicit expressions for rigid body motion have been ob-
tained. It also follows from Eq. (29) that the vertical rigid body 
motion had a logarithmic growth in time, which is consistent with 
the previous results for isotropic elasticity in (Kaplunov et al., 
2010a). 

4.2. Super-Rayleigh regime 

On substituting Eq. (19) into Eq. (21) and performing straight-
forward manipulations, we deduce the following equation: 

𝜓1
∗(𝜉, 𝑘1𝑥2, 𝑡) = −

𝑐𝑅𝑃1

2𝜋
[
2𝑐𝑅

𝑣−𝑣+
(
𝑘1𝑥2

2
ln

(𝜉−𝜉1)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 +

𝜉 tan−1
𝜉

𝑘1𝑥2
−𝜉 tan−1

𝜉−𝜉1

𝑘1𝑥2
) −

1

𝑐𝑅+𝑣
(
𝑘1𝑥2

2
ln

(𝜉−𝜉2)
2+𝑘1

2𝑥2
2

(𝜉−𝜉1)
2+𝑘1

2𝑥2
2 +

(𝜉 − 𝜉2)tan
−1 𝜉−𝜉1

𝑘1𝑥2
− (𝜉 − 𝜉2)tan

−1 𝜉−𝜉2

𝑘1𝑥2
)]. (30) 

Then, from Eq. (23), the displacements 1u  and 2u  are ob-

tained, coinciding with those for the sub-Rayleigh regime, namely 
Eqs (24) and (25). Study of the limiting behaviour of both dis-
placements also gives the same structure as in Eqs (26)–(29), 

except for 
0

1

ru  that now is determined by— 

𝑢1
𝑟0 = −

𝑐𝑅
2𝑃1(𝑘1+𝜗𝑘2)

2𝑣−𝑣+
. (31) 

4.3. Resonant regime 

Here, we study the case when the speed of the moving load 
coincides with the surface wave speed. Taking into account Eq. 

(20), the potential 𝜓1
∗ is found as: 

𝜓1
∗(𝜉, 𝑘1𝑥2, 𝑡) =

𝑃1

4𝜋
[
𝑘1𝑥2

2
ln

(𝜉+2𝑐𝑅𝑡)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 + (𝜉 +

2𝑐𝑅𝑡) (tan
−1 𝜉

𝑘1𝑥2
− tan−1

𝜉+2𝑐𝑅𝑡

𝑘1𝑥2
)]. (32) 

Substituting (32) into (23), we have: 

𝑢1 = −
𝑐𝑅𝑃1𝑥2𝑡

2𝜋
[

𝑘1
2

𝜉2+𝑘1
2𝑥2

2 +
𝜗𝑘2

2

𝜉2+𝑘2
2𝑥2

2] −
𝑃1𝑘1

4𝜋
[tan−1

𝜉

𝑘1𝑥2
−

tan−1
𝜉+2𝑐𝑅𝑡

𝑘1𝑥2
] −

𝑃1𝜗𝑘2

4𝜋
[tan−1

𝜉

𝑘2𝑥2
− tan−1

𝜉+2𝑐𝑅𝑡

𝑘2𝑥2
], (33) 

𝑢2 =
𝑐𝑅𝑃1𝜉𝑡

2𝜋
[

1

𝜉2+𝑘1
2𝑥2

2 +
𝜗

𝜉2+𝑘2
2𝑥2

2] −
𝑃1

8𝜋
[ln

(𝜉+2𝑐𝑅𝑡)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 +

𝜗ln
(𝜉+2𝑐𝑅𝑡)

2+𝑘2
2𝑥2

2

𝜉2+𝑘2
2𝑥2

2 ]. (34) 

The limiting behavior of displacements as t → ∞ for resonant 
case gives 

𝑢1 = −
𝑐𝑅𝑃1𝑥2𝑡

2𝜋
[

𝑘1
2

𝜉2+𝑘1
2𝑥2

2 +
𝜗𝑘2

2

𝜉2+𝑘2
2𝑥2

2], (35) 

and: 

𝑢2 =
𝑐𝑅𝑃1𝜉𝑡

2𝜋
[

1

𝜉2+𝑘1
2𝑥2

2 +
𝜗

𝜉2+𝑘2
2𝑥2

2] −
𝑃1(1+𝜗)

4𝜋
ln(2𝑐𝑅𝑡). (36) 

5. NUMERICAL ILLUSTRATIONS 

First, let us illustrate the obtained steady-state solution availa-
ble in Eq. (16). Three forms of the strain–energy function are 
considered in the following, namely the neo-Hookean, Gent, and 
Gent–Gent models, which are typically used for modelling rubber-
like materials. 

The well-known neo-Hookean strain–energy function is written 
as: 

𝑊 =
𝜇

2
(𝐼1 − 3), (37) 

where 𝜇 is the ground-state shear modulus, and 𝐼1 is given by: 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2, (38) 

where 𝜆𝑖  (𝑖 = 1,3) are the principal stretches of the underlying 

deformation, related by an incompressibility condition 𝜆1𝜆2𝜆3 =
1 [see Dowaikh and Ogden (1990) for more details]. 

Consider also extensions of the neo-Hookean model, includ-
ing the Gent strain–energy function (Gent, 1996) 

𝑊 = −
𝜇

2
𝐽𝑚ln (1 −

𝐼1−3

𝐽𝑚
), (39) 

where 𝐽𝑚 is a material constant characterising material extensibil-

ity and the shear modulus 𝜇 = 𝜇0 +
2𝐶2

3
 with 𝐶2 denoting the 

material constant, along with its more advanced version usually 
referred to as the Gent–Gent material model (Pucci and Sacco-
mandi, 2002) defined by 

𝑊 = −
𝜇0

2
𝐽𝑚ln (1 −

𝐼1−3

𝐽𝑚
) + 𝐶2ln (

𝐼2

3
), (40) 

where 𝐼1 is given by (38), and 𝐼2 = 𝜆1
−2 + 𝜆2

−2 + 𝜆3
−2, see also a 

recent contribution by (Zhou et al., 2018). 
Figs. 2, 3 demonstrate the computation results for different 

forms of the strain-energy function at the depth 𝑥2 = 0.5. The 

system parameters are chosen as follows: 𝜇0 = 0.2853  MPa, 
𝐶2 = 0.1898  MPa, 𝐽𝑚 = 88.43 (according to (Zhou et al., 

2018)), 𝜌 = 1522 kg m3,⁄  𝑣 = 0.8 𝑐𝑅 , 𝑃0 = 1, 𝜆1 = 1.25, 
𝜆2 = 𝜆1

−1, 𝜆3 = 1. It is also assumed that a parameter 𝑍 = 0, 
which is used for calculating the normal Cauchy stress 𝜎2 
(Dowaikh and Ogden, 1990), 

𝜎2 = 𝛾 − √𝛾𝛼 + 𝑍√2√𝛾𝛼(𝛽 + √𝛾𝛼),    − 1 ≤ 𝑍 ≤ 1,  (41) 

Thus, the surface wave has a non-zero velocity and is local-
ised. 
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Fig. 2. Horizontal displacement 𝑢1 for the neo-Hookean,  
            Gent and Gent-Gent material models 

 
Fig. 3. Vertical displacement 𝑢2 for the neo-Hookean,  
            Gent and Gent-Gent material models 

As can be seen from Figs 2 and 3, the neo-Hookean and Gent 
material models give almost identical results for both displace-

ments 𝑢1 and 𝑢2, whereas using the Gent–Gent model results in 
higher values of the displacement amplitudes with increasing 𝜉. In 
what follows, we use the Gent–Gent model, since it seemingly 
provides a better agreement with experimental data, as demon-
strated in a study by Zhou et al. (2018). 

Variation of the amplitude of the surface displacements 𝑢1 

and 𝑢2 on the moving coordinate is illustrated in Figs 4 and 5 for 
several values of the transverse variable 𝑥2. 

 
Fig. 4. Dependence of displacement 𝑢1 on the moving coordinate 𝜉  

            for different values of 𝑥2 

 
Fig. 5. Dependence of displacement 𝑢2 on the moving coordinate 𝜉  

             for different values of 𝑥2 

Predictably, the obtained graphs (Figs 4 and 5) indicate 
smoothening of displacement profiles under the moving load with 
increase in depth. 

To present the numerical results for the transient moving load 
problem, the Gent–Gent model [Eq. (40)] is used for the same 
material parameters as before. The speed of the moving load for 
various regimes is taken as 𝑣 = 0.8 𝑐𝑅 , 𝑣 = 1.2 𝑐𝑅  and 𝑣 = 𝑐𝑅  
for the sub-Rayleigh, super-Rayleigh and resonant regimes, re-
spectively (Figs 6–11). 

 
Fig. 6. The sub-Rayleigh transient displacement 𝑢1  

            for different values of 𝑥2 

 
Fig. 7. The sub-Rayleigh transient displacement 𝑢2  

            for different values of 𝑥2 
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Figs 6 and 7 demonstrate the sub-Rayleigh transient dis-

placements u1 and u2; Figs. 8 and 9 represent the super-
Rayleigh transient displacements, see Eqs (24) and (25); and 
Figs. 10 and 11 correspond to the resonant transient displace-
ments Eqs (33) and (34), depending on the values of the vertical 

coordinate x2. 
It is emphasised that the obtained shapes of displacements 

are typical for a broad range of deformations, with qualitatively 
similar behaviour occurring for the non-deformed linear isotropic 

case as well, when 𝜆1 = 𝜆2 = 𝜆3 = 1. 

 
Fig. 8. The super-Rayleigh transient displacement 𝑢1  

           for different values of 𝑥2 

 
Fig. 9. The super-Rayleigh transient displacement 𝑢2  

           for different values of 𝑥2 

 
Fig. 10. The resonant transient displacement 𝑢1 for different values of 𝑥2 

 
Fig. 11. The resonant transient displacement 𝑢2 for different values of 𝑥2 

It should be noted that the accuracy of the approximate results 
within the model has been discussed in a study by (Kaplunov and 
Prikazchikov, 2017; Sect. 4.3.1), where it was shown that for a 
wide class of loads, the asymptotic formulation captures the con-
tribution of the Rayleigh poles. Moreover, in case of transient 
problem, as shown in a study by Kaplunov et al. (2010a), the 
near-resonant solution is valid for large times when the effect of 
the body waves becomes negligible. Moreover, comparison of 
exact and approximate solutions revealed a wide range of speeds, 
in which the approximation performs at a reasonable accuracy 
[Fig. 8 in Kaplunov et al. (2010a)]. 

6. CONCLUSION 

The near-resonant regimes of the steady-state moving load 
problem on a pre-stressed, incompressible elastic half-space have 
been studied. Implementation of the hyperbolic–elliptic model for 
surface wave allowed explicit solutions for the displacement com-
ponents. Illustrations in Figs. 2 and 3 revealed some possible 
similarities between the neo-Hookean, Gent, and Gent–Gent 
material models. The consideration has then been extended to 
transient problem, allowing an elegant approximate solution in 
terms of elementary functions, which makes it convenient for 
further analysis, including the limiting behaviour for large time, 
providing explicit results for the components of rigid body motion. 

Various extensions of the approach include derivation of 3D 
asymptotic models in pre-stressed media. Although a straightfor-
ward explicit approach could be cumbersome algebraically, there 
is a chance of more elegant representation though Stroh formal-
ism, in line with results reported recently in a study by Fu et al. 
(2020). It is worth noting that adding vertical inhomogeneity will 
lead to smoothing of surface discontinuities; for more details refer 
to a study by Erbaş et al. (2017). Finally, we note that it is also 
possible to extend the methodology to composite models for 
elastic layers (Erbaş et al., 2018; Erbaş et al., 2019), as well as to 
consider the dynamics of a pre-stressed half-space with cavities 
(Alekseeva and Ukrainets, 2009) and crack propagation (Mishuris 
et al., 2012; Gourgiotis and Piccolroaz, 2014). 
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