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Abstract: This article investigates the robust stabilization and control of the inverted pendulum on a cart against disturbances, measure-
ment noises, and parametric uncertainties by the LFT-based LPV technique (Linear-Fractional-Transformation based Linear-Parameter-
Varying). To make the applying of the LPV technique possible, the LPV representation of the inverted pendulum on a cart model is devel-
oped. Besides, the underactuated constraint of this vehicle is overcome by considering both degrees of freedom  
(the rotational one and the translational one) in the structure. Moreover, the selection of the weighting functions that represent the desired 
performance is solved by two approaches of evolutionary algorithms; Genetic Algorithms (GA) and Evolutionary Strategies (ES) to find  
the weighting functions’ optimal parameters. To validate the proposed approach, simulations are performed and they show  
the effectiveness of the proposed approach to obtain robust controllers against external signals, as well as the parametric uncertainties.   
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1. INTRODUCTION 

1.1. Context and Motivations 

The H∞ control is one of the efficient control approaches on the 
robustness problem. Its objective is to minimize the gain between 
the external input signals and the so-called output signals (Zhou 
and Doyle, 1998). For the first time, it is developed for the Linear 
Time-Invariant systems (LTI). An extension of the H∞ theory for 
the Linear Parameter Varying systems (LPV) has been devel-
oped. It has investigated the control synthesis and stability analy-
sis of the LPV systems (Iwasaki and Shibata, 2001; Scherer, 
2001; Wu, 2001). There are three kinds of LPV representations. 
First, the polytopic approach; the parameters are used at each 
vertex in the polytope. The main disadvantage of this approach is 
that exponential number of controllers are required, therefore, 
solving a large number of Linear Matrices Inequalities (LMI) and 
the computational effort is then expensive (Salhi et al., 2015; Liu, 
2017). Second, gridding linearization; with this approach, there 
are simple controllers to implement, but, because the discretiza-
tion on the parameters space is not well-defined (Wu et al., 1996), 
we may get infinity controllers. Third and last one; the LPV system 
with Linear Fractional Transformation (LFT) is common in separat-
ing the uncertainties from the nominal model in robust control. In 
this class, the same structure (LFT) is used with varying parame-
ters. The main advantage of this approach is that minimal LMIs 
are solved to design a single controller. This controller has a self-
scheduled structure around the parameters (Packard, 1994; Ap-
karian and Gahinet, 1995). The LPV theory shows efficiency in 
overcoming the complexity caused by the nonlinearity, especially 
the LFT representation, which we used in this paper. Moreover, 
researches were carried out about LPV systems in robust control 
because it’s rigorous in robust stability. So, rather than divide the 

nonlinear system in a set of LTI systems according to their operat-
ing points, the LPV system is developed by considering the non-
linearities as varying parameters, it is called here a quasi-LPV 
system (Shamma and Athans, 1991; Abbas et al., 2014). 

On the other hand, the presented paper aims to investigate the 
design of a robust LPV controller for an inverted pendulum on a 
cart. The inverted pendulum is a classical benchmark, which can 
be considered as the simplest robotic system with one rigid body 
and one joint (Boubaker, 2013). The inverted pendulum could be 
considered as an ideal nonlinear system with a stable equilibrium 
point when the pendulum is in the pending position and an unsta-
ble equilibrium point when the pendulum is in the upright position. 
When the system is moved up from the pending position to the 
upright position, the model is strongly nonlinear with the pendulum 
angle. Besides, with two Degrees Of Freedom (DOF); and only 
the horizontal force, the inverted pendulum is the simplest Under-
actuated Mechanical System (UMS). Therefore, the inverted 
pendulum seems to be the platform for the implementation of 
different nonlinear and linear approaches; augmented PID control-
ler (Siradjuddin et al., 2018), fuzzy logic control (El-Bardini and El-
Nagar, 2014), sliding mode (Park and Chwa, 2009), predictive 
control (Ohhira and Shimada, 2017), and optimal control (Prasad 
et al., 2014). 

1.2. Related Works 

Many recent papers have interested the LPV techniques. For 
instance, in Tasoujian et al. (2020), the authors considered 
a parameter-varying model with delays to describe the dynamics 
of mean arterial blood pressure. Next, they designed a gain-
scheduled output feedback LPV controller against disturbances 
and norm-bounded uncertainties to develop and regulate a real-
time mean arterial blood pressure response of patients via time 
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delay LPV control technique. The LPV techniques are commonly 
used in sensible systems that need rigorous rejection of disturb-
ances, uncertainties’ effects, and faults like unmanned aerial 
vehicles (López-Estrada et al., 2016; Hasseni and Abdou, 2018). 
The authors of (Nguyen et al., 2020) constructed a conceptual 
model of narrow tilting vehicles in a polytopic LPV form, and they 
then proposed a static output feedback control method as the 
simplest structure to avoid the use of costly vehicle sensors. In 
(Xu et al., 2019), a novel robust fault detection approach is pro-
posed. Besides, an unknown input observer is designed for LPV 
systems with both state and output scheduled by inexact schedul-
ing variables. Here, the stability conditions for the proposed ap-
proaches are established via LMI. In Rotondo et al. (2018), a 
discrete-time LPV unknown input observer is proposed for the 
diagnosis of actuator faults and ice accretion in unmanned aerial 
vehicles. The effectiveness of the proposed approach is validated 
by simulations illustrating the diagnosis of actuator faults and icing 
in a small unmanned aerial vehicle. In Li et al. (2019), the authors 
designed a novel fault detection filter for a class of continuous-
time LPV systems. This filter is transformed into an H∞ filtering 
problem for the filtering error system with uncertain parameters. In 
Liu et al. (2019), an LPV model for the aero-engine dynamics is 
constructed. Next, a theoretical sufficiency criterion is provided to 
guarantee H∞ performance based on LMI. The simulations 
showed the validity of the proposed strategy by reducing the 
computational cost and avoiding false switching due to disturb-
ances. The authors of (Yang et al., 2020) constructed an LPV 
model of the proton-exchange-membrane-fuel-cell system to 
describe its behaviour and to reduce the computation cost. Be-
sides, this LPV model is used to propose an augmented state 
observer for simultaneously estimating the states and component 
faults. The robustness is guaranteed against disturbances and 
measurement noises. In Alcalá et al. (2020), to develop a Model 
Predictive Controller that can be calculated online with reduced 
computational cost, the authors used the LPV theory to model and 
to control an autonomous vehicle. On the other hand, the problem 
of the best trajectory is solved by an optimal offline trajectory 
planner. 

1.3. Challenges and Contributions 

In previous work (Hasseni and Abdou, 2017), the translational 
DOF has been eliminated by taking a reduced model; the model 

was presented by two states (θ, 𝜃̇), the objective was to stabilize 
the pendulum in null angle with robustness against disturbances 
and uncertainties. In this work, the novelty is presented within 
these three points; include the friction effect and consider the 
velocity as a state (a), getting optimal weighting functions (b) and 
both of the two DOF (θ and x) is stabilized and controlled simulta-
neously (c). 
a) Unlike Hasseni and Abdou (2017), in this work, we manipulate 

with considering the friction effect, so, the translational velocity 
has been included as a state. We note that we don’t consider 
the translational position (x) as a state because it isn’t neces-
sary to measure or estimate the position of the pendulum’s 
cart (i.e., Segway), where the objective is to stabilize it be-
cause the rider can move it by inclining himself. 

b) The technique of the controller design (LFT-based LPV H∞) is 
applied here. One of the problems we face on the design is 
the weighting functions’ selection, which depends on experi-
mental skills. Many researchers have been interested in this 

issue (Zhou and Doyle, 1998; Beaven et al., 1996; Hu et al., 
2000), but there is no general methodology to select the 
weighting functions. This problem appears on complex sys-
tems when the performance specification is not (or is difficult 
to) defined. When we impose such optimal desired perfor-
mance presented by the weighting functions, the H∞ controller 
design process maybe failed to find a suitable controller for 
such performance, the solution is that we have to demean the 
performance specification. Nature-inspired stochastic optimi-
zation tools have been used in many works to get the 
weighting functions’ optimal parameters with the existing H∞ 
controller, for the LTI system (Alfaro-Cid et al., 2008), for a 
polytopic-LPV system (Do et al., 2011; Vu et al., 2017), and 
for an LFT-LPV system (Hasseni and Abdou, 2020). These 
tools are more required in the multi-objective problem, which 
is very common in the controller designing process. To get the 
weighting functions’ optimal parameters, we use in this paper 
two evolutionary algorithms; first, the Genetic Algorithm (GA), 
which is based on Darwinian evolution, and is created by Hol-
land (Holland, 1992). Second, the Evolutionary Strategies 
(ES), the first evolutionary algorithm created by Rechenberg 
(1973), which is based on biological evolution. 

c) With 2DOF (x and θ) and just one input (Force), the inverted 
pendulum is considered as an Underactuated Mechanical 
System (UMS). Based on previous works (Hasseni and 
Abdou, 2017; Choukchou-Braham et al., 2014a), we conclude 
that the inverted pendulum is a kind of system that could not 
be transformed to chain structured and be controlled in cas-
cade strategy. Therefore, in this paper, the global stabilization 
of the vehicle is investigated under this constraint. We design 
a controller that stabilizes the two DOF (θ and x) simultane-
ously. 

1.4. The Paper Outline 

The outline of the paper is as follows: In Section 2, we intro-
duce the proposed vehicle to control, the inverted pendulum on a 
cart. Besides, we present its model and develop its equivalent 
LFT-LPV representation. In Section 3, we will show the selected 
evolutionary algorithms, GA and ES, and the characteristics of 
such techniques we use. In Section 4, after getting the closed-
loop system, including the disturbance, the measurement noise, 
and the weighting functions, we will apply the optimization process 
to get the weighting functions’ optimal parameters considering the 
angle as the only output. The underactuated degree of freedom is 
taken into account in Section 5, we will show the ultimate simula-
tion results of stabilizing the system. Finally, our conclusion is 
presented in Section 6. 

2. THE INVERTED PENDULUM ON A CART 

2.1. The mathematic model of the inverted pendulum  
on a cart 

A dynamic model of any mechanical system can be derived 
from Lagrange-Euler formulation. We can describe the dynamic 
model of the mechanical system as follows: 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝑢                                             (1) 
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where q is the degree of freedom coordinate. 𝑞̇ and 𝑞̈ are its first 

and second derivatives. 𝑀(𝑞) is the symmetric definite positive 

inertia matrix. The term 𝐶(𝑞, 𝑞̇) is the centrifugal and Coriolis 

matrix. The term 𝐺(𝑞) is the gravitational torques vector, and u is 
the inputs. 

The model of the inverted pendulum on a cart is a benchmark 
for many autonomous vehicles, that is, Segway (Younis and 
Abdelati, 2009), which is a vehicle having two degrees of freedom; 

one is relating on the angular coordinate (θ) and the other is 
relating on the translational coordinate (x), but the only applied 
input is the linear thrust force (F). The control objective is to stabi-
lize the pendulum in the null angle whatever the initial angle (Fig. 
1).  

 
Fig. 1. Geometric scheme of an inverted pendulum on a cart 

The dynamic model of the considered system, the inverted 
pendulum on a cart, is presented in the next expression (Fiacchini 
et al., 2006; Raffo et al., 2007): 

[
𝑀 + 𝑚 𝑀𝑙 cos(𝜃)

𝑀𝑙 cos(𝜃) 𝑀 𝑙2
] [

𝑥̈
𝜃̈
] + [𝑏 −𝑀𝑙 𝑠𝑖𝑛(𝜃)𝜃̇

0 0
] [

𝑥̇
𝜃̇
] +

[
0

−𝑀𝑔𝑙 sin 𝜃
] = [

𝐹
0
]                                                                 (2) 

Where m is the mass of the cart. M is the pendulum mass that 
presents here the mass of the rider who guides the vehicle, l is 

the pendulum length, g is the gravity constant, b is the linear 
friction force coefficient, and F is the linear force applied in the 
vehicle. The objective of this research is the robust control of this 
nonlinear system by using the LPV technique. We will create the 
nonlinear model of the inverted pendulum (2) as an LPV with LFT 
representation in the next subsection.  

2.2. The LFT-LPV representation of the inverted pendulum 
on a cart 

As we have mentioned, there are different presentations of an 
LPV system; polytopic, gridding, and LFT. We use the last one to 
present the inverted pendulum model because we are getting a 
single scheduled controller. We have to notice that the controller 
has the same representation of the system. 

We extract the two equations from (2): 

{
(𝑀 + 𝑚)𝑥̈ + 𝑀𝑙 cos(𝜃) 𝜃̈ + 𝑏𝑥̇ − 𝑀𝑙 sin (𝜃)𝜃̇2 = 𝐹   

𝑀𝑙 cos(𝜃) 𝑥̈ + 𝑀𝑙2𝜃̈ − 𝑀𝑔𝑙 sin(𝜃) = 0                            
(3) 

We face the issue that the term (𝑀𝑙 sin (𝜃)𝜃̇2) makes the ap-
plying of the LFT-LPV technique difficult. To avoid this problem, 

we change the generated signal by the controller. The new dy-
namic model is: 

{
(𝑀 + 𝑚)𝑥̈ + 𝑀𝑙 cos(𝜃) 𝜃̈ + 𝑏𝑥̇ = 𝑢      

𝑀𝑙 cos(𝜃) 𝑥̈ + 𝑀𝑙2𝜃̈ − 𝑀𝑔𝑙 sin(𝜃) = 0
              (4) 

In which: 

𝑢 = 𝐹 + 𝑀𝑙 sin (𝜃)𝜃̇2                                                              (5) 
By replacing one equation of (4) with the other, we take the 

nonlinearities as varying parameters. After some mathematical 
operations, we extract the LFT-LPV state space (6) and its struc-
ture (Fig. 2): 

[
𝑥̇
𝑧𝜌

𝑦
] = [

𝒜 ℬ𝜌 ℬ1

𝒞𝜌 𝒟𝜌𝜌 𝒟𝜌1

𝒞1 𝒟1𝜌 𝒟11

] . [
𝑥
𝑤𝜌

𝑢
]                                        (6) 

                   𝑤𝜌 = 𝛩 𝑧𝜌 

where x is the states’ vector, 𝑥 = [𝜃 𝜃̇ 𝑥̇]𝑇. u is the input. zρ 
and wρ are the inputs and outputs of the parameters block Θ. 

The matrices: 

𝒜 =

[
 
 
 
 
0 1 0
𝑔

𝑙
0

𝑏

(𝑀 + 𝑚)𝑙

0 0
−𝑏

(𝑀 + 𝑚) ]
 
 
 
 

, ℬ𝜌

=

[
 
 
 
 
0         0                0              0       
𝑔

𝑙
 

1

(𝑀 + 𝑚)𝑙
       0       

𝑀

(𝑀 + 𝑚)

0          0        
𝑀𝑙

(𝑀 + 𝑚)
       0      

]
 
 
 
 

,  

 ℬ1 = [

0
−1

(𝑀+𝑚)

1

(𝑀+𝑚)

] , 𝒞𝜌 =

[
 
 
 
1   0           0          
0   0           𝑏          
𝑔

𝑙
    0          

𝑏

(𝑀+𝑚)𝑙

0     0           0          ]
 
 
 
, 𝒞1 =

[1 0 0],               (7) 

𝒟𝜌𝜌 =

[
 
 
 
 
 0           0           0           0         
 0           0           0           0         
𝑔

𝑙
  

1

(𝑀 + 𝑚)𝑙
  0  

𝑀

(𝑀 + 𝑚)
 0           0            1           0         ]

 
 
 
 

, 𝒟𝜌1 =

[
 
 
 
 

0
−1
−1

(𝑀 + 𝑚)
0 ]

 
 
 
 

,  

 𝒟1𝜌 = [0  0  0  0], 𝒟11 = 0, 𝛩 = [

𝜌1

0
0
0

0
𝜌2

0
0

0
0
𝜌3

0

0
0
0
𝜌4

]                                   

 
Fig. 2. LFT-LPV scheme of the inverted pendulum 

Before designing a controller to stabilize such an LPV system, 
we need to provide the limit bound of each parameter. All the 

parameters; ρ1 … ρ4 are dependent on θ. 
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Theoretically, −90° ≤ 𝜃 ≤ 90° but to avoid the non-

controllability, we have to reduce the bound to −80° ≤ 𝜃 ≤
80°. Table 1 presents the range of each parameter. 

Tab. 1. The ranges of the varying parameters 

Parameter Description Min. value Max. value 

ρ1 
(
sin 𝜃

𝜃
) − 1 -0.3 0 

ρ2 cos 𝜃 − 1 -0.83 0 

ρ3 cos 𝜃 0.17 1 

ρ4 𝑐𝑜𝑠2 𝜃 0.03 1 

We notice that in (6)–(7), we didn’t generate the closed-loop 
system yet, just convert the plant (4) to LFT-LPV representation. 
We need to interconnect the plant with the disturbances and the 
weighting functions. Our contribution is to select the weighting 
functions parameters by the nature-inspired algorithms (GA and 
ES). So, in the next section, we introduce the algorithms that we 
developed and their characteristics. 

3. NATURE-INSPIRED ALGORITHMS 

The nature-inspired optimization algorithms have common 
tasks on their procedures: selection randomly of initial solutions, 
evaluate the solutions depending on a fitness function, elimination 
of the worst solutions, and generation of new solutions. This last 
one is carried out by a set of operations (crossover, mutation, and 
selection). The significant difference between such algorithms is 
the generation of new solutions. 

In the next subsections, we will show a description of the used 
algorithms (GA, ES), and their properties are explained by their 
pseudo-codes.    

3.1. Genetic Algorithm 

Genetic Algorithm (GA) is one of the oldest evolutionary algo-
rithms. It is the most popular EAs in engineering applications. It 
was developed and created by Holland (1992). It is based on the 
Darwinian evolution of biological systems. Its operators are the 
biological operators: crossover, mutation, and selection, which are 
applied to each population. The population is divided on individu-
als, where the best individuals have a chance to survive and 
transfer their characteristics to the next generation. The individual 
is called chromosome, which presents a solution. In our work, we 
consider the individual as a real-coded solution (Wright, 1991) 
presented by a vector and the generation is the iteration to gener-
ate a new set of solutions. The procedure is as illustrated in  

Algorithm 1: 

Algorithm 1 : Genetic Algorithm 

Initialize a solutions randomly; 

While max_Generation not meet do 

Evaluate each solution; 

Rank the solutions; 

Recombine_BMW pairs of parents; 

Mutate the offspring by pm; 

Replace the worst parents by best offspring; 

end while 
 

The operation Evaluate is the evaluation according to its fit-
ness function, where we need to rank the population according to 
its fitness to perform the Best-Mate-Worst crossover (Abdou and 
Soltani, 2005; Yeo and Lu, 1999). All the population’s individuals 
are passing on the crossover operation (Recombine_BMW), 
which is presented by the following expression: 

{
𝑥𝑖

𝑡+1 = 𝛼. 𝑥𝑖
𝑡 + (1 − 𝛼). 𝑥𝑗

𝑡

𝑥𝑗
𝑡+1 = 𝛼. 𝑥𝑗

𝑡 + (1 − 𝛼). 𝑥𝑖
𝑡                           (8) 

The operation Mutate is a random mutation that is implement-

ed on a few of the offspring (probability of pm) after the crossover 
operation. The Gaussian mutation is used as: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+1 + 𝑁(0, 𝜎)                (9) 

Finally, the operator of the selection (Replace) permits to re-
place the worst individuals of the previous generation by the best 
individuals of the new generation to keep the size of the popula-
tion and pass to the next generation. The parameters are shown 
in Table 2. 

3.2. Evolutionary Strategies 

Evolutionary Strategies (ES) is the oldest evolutionary algo-
rithm. It is based on biological evolution. Like the GA, the ES 
operators are crossover (combination), mutation, and selection 
(Hansen et al., 2015). Its main advantage is the self-adaptive 
control of parameters, especially in the mutation task. ES contains 
many strategies; we use here the (μ+λ) strategy (Abdou and 
Soltani, 2008) with real-coding individuals. In the selection task, 

we took λ individuals from the offspring’s population gathered with 
the best μ individuals from the parent’s population, and we con-
sider the result as a new generation. Unlike the GA, in the combi-
nation (crossover), we don’t need to rank the population because 
the combination is randomly achieved between individuals (a 

fraction λ). The procedure is illustrated  
in Algorithm 2: 

Algorithm 2 : Evolution Strategies  

Initialize solutions randomly; 

While max_Generation not meet do  

Generate new solutions; 

Recombine pairs of parents; 

Mutate the offspring; 

Rank the solutions; 

Replace new generation (μ+λ); 

end while 
 

The crossover task (Recombine) is implemented as in the case 

of the GA (8) by selecting λ parents randomly with a real-coding of 
the individuals (Wright, 1991). The main characteristic of ES is the 
self-adaptation mutation. So, we propose to use a log-normal 
auto-adaptive mutation in Mutate task as: 

𝜎𝑡+1 = 𝜎𝑡 . 𝑒(√𝑛)
−1

.𝑁 (0,1)                  (10) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+1 + 𝑁(0, 𝜎𝑡+1)                  (11) 
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In the last operation (Replace), we take λ individuals of the off-

spring population and the best μ ones of parents’ population to 
transfer them to the next generation. The common parameters are 
max_Generation, which is equal to 20 and population size is equal 
to 50. The other parameters are shown in Table 2. 

 
Tab. 2. Parameters setting of different algorithms 

GA ES 

Par. Val. Par. Val. 

cross. 

pm 

α 

σ 

BMW 

0.04 

1/3 

0.04 

pm 

λ 

μ 

σ0 

0.3 

36 

14 

0.3 

4. CONTROLLER DESIGN AND IMPLEMENTATION 

In this section, the only output we consider is the angle (θ), 
where the objective is to make the pendulum’s orientation null 
without considering the translational DOF. 

4.1. The closed loop generation 

Before passing to the controller’s design phase, we are going 
to generate the closed-loop system (plant-controller) including the 
external signals and weighting functions. We notice that the con-
troller has the same structure as the plant (Fig. 3). 

The LFT-LPV state space of the augmented plant is as follows: 

𝑥̇ = 𝐴 𝑥 + 𝐵𝜌 𝑤𝜌 + 𝐵1𝑤 + 𝐵2𝑢     

𝑧𝜌 = 𝐶𝜌𝑥 + 𝐷𝜌𝜌𝑤𝜌 + 𝐷𝜌1𝑤 + 𝐷𝜌2𝑢

𝑧 = 𝐶1𝑥 + 𝐷1𝜌𝑤𝜌 + 𝐷11𝑤 + 𝐷12𝑢  

𝑦 = 𝐶2𝑥 + 𝐷2𝜌𝑤𝜌 + 𝐷21𝑤 + 𝐷22𝑢  

                                   (12) 

 𝑤𝜌 = 𝛩𝑧𝜌 

where x ∈ Rn is the state vector. u ∈ Rnu is the control inputs vec-
tor. y ∈ Rny is the measurement outputs vector. z ∈ Rnz is the 
controlled outputs. w ∈ Rnw is the exogenous inputs (i.e., disturb-
ances).  zρ and wρ ∈ Rr are the inputs and outputs of parameter 
block Θ, with: Θ = diag(ρ1Ir1, ρ2Ir2 … ρkIrk).  

The controller K(ρ) is also an LPV system with LFT represen-
tation. We present its state space as follows: 

𝑥̇𝐾 = 𝐴𝐾𝑥𝐾 + 𝐵𝐾1𝑦 + 𝐵𝐾𝜌𝑤𝐾𝜌        

𝑢 = 𝐶𝐾1𝑥𝐾 + 𝐷𝐾11𝑦 + 𝐷𝐾1𝜌𝑤𝐾𝜌     

𝑧𝐾𝜌 = 𝐶𝐾𝜌𝑥𝐾 + 𝐷𝐾𝜌1𝑦 + 𝐷𝐾𝜌𝜌𝑤𝐾𝜌

                                    (13) 

       𝑤𝐾𝜌 = 𝛩𝑧𝐾𝜌 

where xK ∈ Rn is the controller states vector. y ∈ Rny is the meas-

urement outputs from the plant. u ∈ Rnu is the controller outputs. 

zKρ and wKρ ∈ Rr are the inputs and the outputs of the parameter 

block. 

 
Fig. 3. LFT-LPV closed loop structure 

 
Fig. 4. Closed loop plant-controller interconnection 

We interconnect the inverted pendulum system (6)–(7) with the 
exogenous inputs (disturbance on the input, and measurement 
noise on the output). We notice in (7) that the output matrix 

(𝒞1 = [1 0 0]) because we considered the angle θ as the 
only output. 

As a last step of the designing the closed-loop scheme, we 
provide the applied force (F) from the generated input (u), from 
(5): 

𝐹 = 𝑢 − 𝑀𝑙 sin (𝜃)𝜃̇2                                                           (14) 

The closed-loop scheme is presented in Fig. 4, in which there 
are two exogenous inputs (d: disturbance, n: noise), the meas-
urement output is the error, and the only input is the force F. We 
have two controlled outputs (ze and zu), which present the per-

formance. Because we have four varying parameters (Tab. 1) zρ, 

wρ, zKρ, and wKρ ∈  R4. 
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As we noticed previously, to design the controller, we have to 
introduce the weighting functions’ parameters. Our contribution is 
based on the choice of the weighting functions’ parameters by two 
evolutionary algorithms (GA and ES) to get the optimal desired 
performance, and as a consequence, a robust scheduled control-
ler that guarantees this performance. In the next subsection, we 
show the optimization procedure.  

4.2. The optimization procedure 

The optimization tools, GA and ES, need to specify some 
characteristics. The weighting functions formula has been taken 
as a first-order filter. The performance criterion is presented by 

We and Wu (Fig. 4). 

𝑊𝑒 = 𝑘𝑒
𝜏𝑒1𝑠+1

𝜏𝑒2𝑠+1
                                                                        (15) 

𝑊𝑢 = 𝑘𝑢
𝜏𝑢1𝑠+1

𝜏𝑢2𝑠+1
                                                                       (16) 

Therefore, each solution contains six parameters: 

𝑠𝑜𝑙. = [𝑘𝑒  𝜏𝑒1 𝜏𝑒2 𝑘𝑢 𝜏𝑢1 𝜏𝑢2]                                              (17) 

The main effect of the optimization by the evolutionary algo-
rithms is the multi-objective. We have taken two dynamical indi-
ces; settling time ST(θ(t)), and the overshoot OV(θ(t)). By 
experience, the system (inverted pendulum on a cart) needs big 
force to stabilize in a short time, it could be faced with a big over-
shoot and oscillations (Fiacchini et al., 2006; Raffo et al., 2007; 
Hasseni and Abdou, 2017). So, it makes sense to give a small 
weight to the settling time and a big weight to the overshoot. We 
have chosen the fitness as follows:                     

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 0.3 𝑆𝑇(𝜃(𝑡)) + 0.7 𝑂𝑉(𝜃(𝑡))                         (18) 

The controller synthesis algorithm is achieved by the small 
gain theorem via LMI conditions. This approach is developed in 
(Packard, 1994; Apkarian and Gahinet, 1995) and we have been 
helped by the toolbox LPVTools (Hjartarson et al., 2015). 

As we noticed, the optimization problem has been achieved by 
two algorithms (GA and ES). Algorithm 3 presents the optimiza-
tion algorithm. We note Algorithm_i to mean Algorithm 1 and 
Algorithm 2 because we use both of them to solve the same 
problem. The details of their procedures and characteristics are 
mentioned in Section 3 and Table 2. 

Algorithm 3 : Optimal weighting functions 

Initialize a solutions (17) randomly; 

While max_Generation not meet do 

Generate the closed loop (Fig. 4); 

Design the own controller; 

Evaluate the solutions based on fitness (18) 

Replace the solutions based on Algorithm_i; 

end while 

The optimal parameters that are obtained by GA and ES are 
presented in Table 3. Thanks to the optimization algorithms we 
guarantee the low pass filter of the control on both algorithms 

because the H∞ controller guarantees this condition|
𝐾

1+𝐾𝑃
| ≤

|
1

𝑊𝑢
| where K is the controller and P is the plant (Zhou and Doyle, 

1998). 

Tab. 3. Weighting functions parameters 

Parameter ke τe1 τe2 ku τu1 τu2 

LPV-GA 3.286 0.4015 6.603 0.673 6.362 0.242 

LPV-ES 6.165 7.493 2.772 1.091 5.968 0.645 

(Hasseni and 

Abdou, 2017) 
5 0.04 1 1 1 0.1 

 
By taking the guidelines of Skogestad and Postlethwaite 

(2003) about the filters’ shaping, we can find that the obtained 
controller with GA (LPV-GA) is suitable with these guidelines. The 
inverse of sensitivity function (1/We) is a high pass filter with a 
small gain in low frequencies and a big gain in high frequencies. 

The desired |
𝐾

1+𝐾𝑃
| = (1/Wu), should be a low-frequency function 

with the maximum gain in low frequencies, while the high-
frequency gain is limited by the controller bandwidth. The equa-

tions (19)–(20) present the standard forms weights We and Wu of 
the LPV-GA controller, presented in Table 3. 

𝑊𝑒 =
1

𝑀𝑠
⁄ 𝑠+𝜔𝑏

𝑠+𝜀𝜔𝑏
=

1
5.05⁄  𝑠+0.4977

𝑠+(0.3042∗0.4977)
                                        (19) 

𝑊𝑢 =
𝑠+

𝜔𝑏𝑐
𝑀𝑢

⁄

𝜀𝑢𝑠+𝜔𝑏𝑐
=

𝑠+0.233
1,485⁄

0.0565 𝑠+0.233
                                             (20) 

Fig. 5 presents the bode magnitude of the inverse filters (19)–

(20). The inverse of the sensitivity function (1/We) is a high pass 

filter, the steady-state error to step input (ε = 0.304), the over-
shoot magnitude (peak sensitivity, Ms = 5.05), and limit closed-

loop bandwidth (ωb = 0.4977 rad/s). The maximum gain of 

(1/Wu) is fairly large (Mu = 1.485), it is limited by the controller 
bandwidth (ωbc = 0.233 rad/s). To make Wu proper, we introduce 

a faraway pole, as an obtained result, ε1 is very small (ε1 = 
0.0565). 

 
Fig. 5. Performance weight (solid) and control weight (dashed)  
           of LPV-GA 

4.3. Simulation results 

This table presents the nominal values of the inverted pendu-

lum on the cart used in this paper. 
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Tab. 4. Nominal parameters of the vehicle 

Parameter Description Value Unit 

m Cart’s mass 35 Kg 

M Pendulum’s mass 70 Kg 

l Pendulum’s arm length 1 m 

g Gravity constant 9.8 m.s-2 

b Friction coefficient 40 N.s.m-1 

We have gotten an LFT-LPV H∞ controller with weighting func-
tions’ selection by GA optimization and another by ES. Fig. 6 
presents a comparison of the dynamic response and the input 
between the three LFT-based LPV controllers; the obtained con-
troller with GA (LPV-GA), the obtained one with ES (LPV-ES), and 
the existing one (Hasseni and Abdou, 2017) (LFT-LPV). Besides, 
we also show the gridding LPV technique and polytopic LPV 
technique (Briat, 2015). In this simulation, the performances of 
each method are presented in Fig. 6 and Table 5, where the initial 
angle is 60°. Among these controllers, the best performance is 
obtained by the LPV-GA algorithm. 

Tab. 5. Performances comparison between different LPV techniques 

Technique Reference 
Overshoot 

(%) 

Settling time 

(s) 

Polytopic-LPV 
(Robert et al., 

2010) 
18 3 

Gridding-LPV 
(Hjartarson et 

al., 2015) 
17 6.45 

LFT-LPV 
(Hasseni and 

Abdou, 2017) 
7.2 1.47 

LPV-ES This work 10.7 0.6 

LPV-GA This work 7.6 0.53 

 
Fig. 6. Dynamic response comparison between different LPV techniques 
           

To demonstrate that the proposed LPV method indeed in-
creases the region of stability, Fig. 7 presents a test of different 
initial angles with two controllers; the existing controller called 
(LFT-LPV) and the optimal one gotten by GA called (LPV-GA). It 
must be shown that the existing controller (dashed line) could not 
exceed 75° as initial angle. With a bigger initial angle than 75°, 
the system is completely unstable. On the other hand, with the 
proposed method (solid line), the system is stable till 86° as an 
initial angle. 

 
Fig. 7. The angle responses with different initial angles, LPV-GA     

     (solid) and LFT-LPV (dashed) 

Now we pass to another point, the robustness to the exoge-
nous inputs. The external inputs we choose are the input disturb-
ance and the noise. As shown in Fig. 8, we apply a permanent 
noise between ± 2°. Starting from 5 s, we apply a disturbance 
force of 200 N as shown in Fig. 8. 

Remark 1: In the simulation, we don’t apply the robust LPV con-
troller on the approximated LPV model (6)–(7), but on the original 
nonlinear model itself (3). 

Fig. 9 presents a comparison of the angle response (θ), the 
linear velocity (V), and the input (F) between LPV-GA and LPV-ES 
with the presence of disturbance and noises. In the curve of (θ), 
we notice that there is robustness to the noises. We notice also 
that there is a variation in 5 s due to the suddenly applied force, 
but the disturbance is ultimately rejected. 
We conclude that the nature-inspired optimization tools, GA and 
ES, helped us to choose the suitable weighting functions parame-
ters to get good performance. Also, the scheduled LFT-LPV con-
troller guarantees the robustness against the external signals. But, 
the linear velocity (V) has not reached the null at the same time 
with the angle (the vehicle has not stopped) because we didn’t 
care for the velocity in the controller design. The system is con-
sidered as a Single-Input Single-Output system (SISO). This is 
what we are discussing in the next section.  



DOI 10.2478/ama-2020-0027               acta mechanica et automatica, vol.14 no.4 (2020) 

193 

 
Fig. 8. The disturbance and the noise 

 

Fig. 9. The angle (θ), the velocity (V) and the force (F) responses   
  with presence of disturbance and noise 

5. EXTENDED LPV STABILIZATION TO THE 2DOF 

An underactuated mechanical system (UMS) is a system that 
has fewer control inputs than the degrees of freedom, as well as 
the inverted pendulum. It has two degrees of freedom; one is 
relating to translational coordinate (x), and the other is relating to 

rotational coordinate (θ), but just one control input, the force (F). 
In Section 4, the inverted pendulum has been stabilized by a 
robust LPV H∞ controller by considering it as a SISO system. In 
the previous simulation (Section 4), the velocity has reached the 
null very slowly (300 seconds). 

We have to impose the constraint of the underactuated charac-
teristic into account. One may say that alternatively to consider 
the angle (θ) as the only output, we consider two outputs: the 

angle (θ) and the linear velocity (𝑥̇) and generate its suitable LPV 
controller. 

We have tried to control the inverted pendulum as a general 
Single-Input Multi-Outputs system (SIMO) by changing the output 

matrix of (6) by (𝒞1 = [
1 0 0
0 0 1

]). The response, either the 

angle or the velocity is oscillation and never stabilize (Fig. 10). In 
this test, the weighting functions are obtained by GA.  

 
Fig. 10. The dynamic response of the inverted pendulum  
              as a SIMO system 

In literature, there is no unique methodology to control a UMS. 
There are different classifications. One of the most common clas-
sifications is Seto and Baillieul’s. It depends on the so-called 
Control Flow Diagram (CFD). According to this classification, a 
UMS could have a chain structure, tree structure, or isolated-
vertex structure (Seto and Baillieul, 1994; Choukchou-Braham et 
al., 2014a). The inverted pendulum is found under the tree class. 

There are sub-classes into the tree structure (A1, A2) (Chouk-
chou-Braham et al., 2014a). Since the first (A1) could be convert-
ed to a chain class by changing the states and controlled as a 
chain structure by Backstepping (Rudra et al., 2017). The other 
subclass (A2) could not. In (Choukchou-Braham et al., 2014b), the 
authors have proposed a method where the configuration varia-
bles (the degrees of freedom) of the system were controlled simul-
taneously and this is what we are going to develop. We have to 

include a term related to stabilize the angle (θ) and another term 

related to stabilize the linear velocity (𝑥̇) in the control law. We will 
denote to the state 𝑥̇ by v. 

The only expression that has information about (θ) is the error 
(the measurement output of the LPV plant, Fig. 4). The closed-
loop system has been changed by adding a proportional term 

related to (v), kv v (Fig. 11). The gain kv presents the weight  

of the velocity, and we choose kv = 0.02. The new output  
is (θ + 0.02 v). 

Remark 2: In this stage, we didn’t design another controller, 
but we kept the controller we have designed in Section 4. 

We pass now to the simulation phase. Fig. 12 presents the dy-
namic response of the angle (θ), the velocity (V), and the force (F) 
of both controllers (LPV-GA and LPV-ES) with the presence of 
disturbance and noise as well as presented in Fig. 8. In addition to 
the angle, the velocity is controlled and it has reached zero on 
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both curves (LPV-GA and LPV-ES). The overshoot exceeds (-
20°), and that is what the pendulum needs to balance itself. We 

note also that the system is robust against the permanent noise 
and the disturbance. 

 
Fig. 11. Underactuated closed loop plant-controller 

 
Fig. 12. The angle (θ), the velocity (V) and the force (F) responses with 

adding the velocity term 

We have to mention that when the H∞ controller is achieved, it 
so guarantees the worst case of uncertainties. That means the 
closed-loop system is asymptotically stable for any ‖𝛥‖∞ ⩽ 1. 

Remark 3: the stability of the augmented system is robust 
(plant-weighting functions), so, the performance of the system is 
robust because the performance is presented by the weighting 
functions. 

In our system, the pendulum’s mass presents the mass of the 
rider. We can apply the uncertainty according to the rider’s mass 
by taking 70 Kg as a nominal mass (Tab. 4). In this simulation, we 
have taken M = nominal value ± 43% (40 Kg, 70 Kg, and 100 Kg). 
Fig. 13 presents the response with the uncertainty of LPV-GA and 
Fig. 14 presents the response with the uncertainty of LPV-ES. We 

note that the controllers are robust to the uncertainty, the angular 
overshoot is between -20° and -30°, the peak velocity is 8 m/s 
when (M = 100), 9 m/s when (M = 70) and 10 m/s when (M = 40). 

All the previous simulations (Fig. 13 and Fig. 14) are achieved 
with 60° as an initial angle. In Fig. 15 and Fig. 16, the simulation 
results of the dynamic responses are achieved with different initial 
angles (60°, 30°, -30° and -60°). Fig. 15 presents the dynamic 
responses of LPV-GA and Fig. 16 presents the dynamic respons-
es of LPV-ES. On both controllers, the 2DOF are stabilized. The 
angle and velocity have reached the equilibrium point simultane-
ously. Besides, it is robust, whatever the initial angle. 

 
Fig. 13. The angle (θ), the velocity (V) and the force (F) responses with 

uncertainty on LPV-GA 
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Fig. 14. The angle (θ), the velocity (V) and the force (F) responses with   
  uncertainty on LPV-ES 

 

Fig. 15. The angle (θ), the velocity (V) and the force (F) responses with  
 different initial angles on LPV-GA 

 

Fig. 16. The angle (θ), the velocity (V) and the force (F) responses  
  with different initial angles on LPV-ES 

6. CONCLUSION 

In this paper, the robust stabilization problem of the inverted 
pendulum on a cart is considered. We have applied a scheduled 
robust controller with type LFT-LPV H∞. As a first step, we have 
developed its LFT-LPV representation from the nonlinear model. 
Second, we have focused on the weighting functions’ parameters 
selection. We have suggested solving it through two nature-
inspired optimization algorithms (GA and ES). Thanks to those, 
besides to get optimal performance, the robustness is guaranteed 
against the disturbances and the uncertainties. The last and im-
portant point we have investigated is the problem of underactua-
tion. The inverted pendulum imposes this constraint and our 
objective is to balance the inverted pendulum where its angle and 
velocity should be zero without adding another actuator. After we 
modify the closed-loop structure, the simulation results have 
shown an optimal performance, the objective is successfully 
achieved. It is robust against external signals and uncertainties. 
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