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Abstract: This article focuses on the motion planning and control of an automated differential-driven two-wheeled E-puck robot using 
Generalized Regression Neural Network (GRNN) architecture in the Virtual Robot Experimentation Platform (V-REP) software platform 
among scattered obstacles. The main advantage of this GRNN over the feedforward neural network is that it provides accurate results  
in a short period with minimal error. First, the designed GRNN architecture receives real-time obstacle information from the Infra-Red (IR) 
sensors of an E-puck robot. According to IR sensor data interpretation, this architecture sends the left and right wheel velocities command 
to the E-puck robot in the V-REP software platform. In the present study, the GRNN architecture includes the MIMO system, i.e., multiple 
inputs (IR sensors data) and multiple outputs (left and right wheel velocities). The three-dimensional (3D) motion and orientation results  
of the GRNN architecture-controlled E-puck robot are carried out in the V-REP software platform among scattered and wall-type obstacles. 
Further on, compared with the feedforward neural network, the proposed GRNN architecture obtains better navigation path length  
with minimum error results. 

Key words: e-puck robot, generalised regression neural network architecture, virtual robot experimentation platform software,  
                    scattered obstacle, Infra-Red sensor

1. INTRODUCTION 

Research on wheeled robotics can be categorised into two 
types: navigation control and stability control. For navigation 
control, we mainly focus on the kinematic part and control the 
displacement, velocity and acceleration of a wheeled robot. Simi-
larly, we consider the dynamic part of a wheeled robot and apply 
force to generate torque to achieve stability control over a robot. 
The researchers use various soft-computing methods like Fuzzy, 
Neural Network, Neuro-fuzzy, nature-inspired algorithms, and 
evolutionary algorithms for navigation and stability control. The 
meaning of navigation control of a wheeled robot is to search a 
collision-free optimal path from the starting location to the target 
among obstacles in the workspace. Obstacle avoidance and wall 
following problems come under navigation control, and the trajec-
tory tracking problem is solved by using stability control torque 
equations. The authors Elmi and Efe (2020) implemented a 
grasshopper algorithm to control the motion of a wheeled robot 
between static and dynamic hurdles. However, the authors pre-
sent only computer simulations, and real-time experiments on an 
experimental wheeled robot have not been found. Long et al. 
(2020) designed the hybridisation of A* algorithm with a bacterial 
foraging optimisation algorithm, and present the global path plan-
ning for an unmanned surface vehicle in a grid map environment. 

Ben Jabeur and Seddik (2020) developed an optimised PID 
neural network with a hybrid fuzzy controller for trajectory tracking 
and motion control of a two-wheeled mobile robot in unknown and 
complex environments. Although the 3D experiments of a two-
wheeled mobile robot were not carried out in that work, further 

research in this direction continues. Another work relevant for 
mention here would be that by Protik et al. (2019), where the 
authors apply chemical reaction optimisation algorithms with 
Euclidean-based fitness functions to determine an optimal motion 
and orientation control for a wheeled robot among uneven obsta-
cles. In Zhao et al. (2020), the authors designed a genetic algo-
rithm optimised type-2 fuzzy controller and implemented this 
developed controller to minimise the locomotion of a wheeled 
robot from a start point to the target between scattered obstacles. 
Pandey et al. (2019) applied an adaptive neuro-fuzzy inference 
system to perform an autonomous motion between static and 
dynamic obstacles for a wheeled robot. Multilayer perceptron 
feedforward neural network (Singh and Thongam, 2018; Pandey 
and Parhi, 2016) had been implemented for wheeled robot navi-
gation in the computer simulation environment between static and 
moving objects. Hadi and Younus (2020) designed the path track-
ing control architecture for a nonholonomic wheeled robot. Moreo-
ver, the authors briefly explain the kinematic and dynamic models 
of a wheeled robot in MATLAB graphical user interface environ-
ments. An extensive review article on the navigation of swarm 
robotics and their various control methods was reported in the 
reference (Osaba et al., 2019; Nedjah and Junior, 2019). 

Grid-map-based navigation and collision avoidance scheme 
for a wheeled robot were presented by Tripathy et al. (2021). In 
their work, different grid size environments are considered to 
show the motion results among obstacles. However, they did not 
show any real-time 3D navigation results in that work. Narasimhan 
and Bettyjane (2020) implemented the fuzzy rule-based architec-
ture to design a local path planner for two co-operating wheeled 
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robots in an unstructured environment. Wang (2021) used Genetic 
Algorithm (GA) to minimise the navigation path length of a 
wheeled robot in MATLAB software-based grid-map environ-
ments. As we know, the convergence rate of the GA is high, and 
that is why it takes more time to reach the goal from the source 
point. Almeida et al. (2021) study deep neural network-controlled 
visual landmarks-based motion planning for a differential-driven 
automated guided vehicle. The authors of Quan et al. (2021) 
applied harmony search algorithm and Morphin algorithm for a 
global path planning of an autonomous mobile robot between 
moving obstacle conditions. However, only two-dimensional (2D) 
simulation results were presented in that work. Teli and Wani 
(2021) designed the hybrid controller by taking the fuzzy method 
with an artificial potential field method and implemented this con-
troller to steer a wheeled robot autonomously between C and H 
types of complicated obstacle conditions. Proportional–Integral–
Derivative (PID) controller has been used in a study (Khan et al., 
2021) for the speed control of both DC motors of a wheeled robot 
during its navigation and obstacle avoidance behaviours. 

The application of different soft-computing methods like 
grasshopper algorithm (Elmi and Efe, 2020), bacterial foraging 
optimisation algorithm (Long et al., 2020), chemical reaction opti-
misation algorithm (Protik et al., 2019), genetic algorithm (Zhao et 
al., 2020), adaptive neuro-fuzzy inference system (Pandey et al., 
2019) and feedforward neural network (Ben Jabeur and Seddik, 
2020; Singh and Thongam, 2018; Pandey et al., 2019) in a 
wheeled robot motion planning problem motivates the authors to 
undertake the present research. After summarising the above-
cited elements in the literature, we have observed that most of the 
researchers (Ben Jabeur and Seddik, 2020; Singh and Thongam, 
2018; Pandey and Parhi, 2016; Almeida et al., 2021) have used 
feedforward or backpropagation neural network to control the 
motion and orientation of a wheeled robot among obstacles in 
various scenarios. Moreover, we have found that the GRNN pro-
vides accurate results in a short period with minimal error com-
pared to other neural networks like feedforward or backpropaga-
tion neural networks (Specht, 1991). This strength of the GRNN 
attracts the authors to select this method in the current work. 
Therefore, in this study, the authors choose GRNN architecture to 
control the motion of an E-puck robot among scattered and wall-
type obstacles. Further on, compared with the feedforward neural 
network (Singh and Thongam, 2018), the proposed GRNN archi-
tecture obtains better navigation path length with minimum path 
error. The contributions of this work are presented as follows: - 
Section 2 presents the kinematic study of an automated differen-
tial-driven two-wheeled E-puck robot. Section 3 provides the 
design of a GRNN architecture for motion and orientation planning 
and control of an E-puck robot among scattered and wall-type 
obstacles in the V-REP software environment. The outcomes of 
the experiments and comparative analysis are organised and 
elaborated in Section 4. Finally, the conclusion and future re-
search work of the present work are summarised in Section 5. 

2. KINEMATIC STUDY OF AN AUTOMATED DIFFERENTIAL-
DRIVEN TWO-WHEELED E-PUCK ROBOT 

This section derives the kinematic equations for an automated 
differential-driven two-wheeled E-puck robot, which control the 
motion and orientation of an E-puck robot during navigation 
among scattered obstacle in the V-REP software platform. Fig. 1 

illustrates the schematic representation of kinematic parts of an 
automated differential-driven two-wheeled E-puck robot in the 
two-dimensional rigid plane. The E-puck robot is a differential-
driven two-wheeled mobile robot developed by École 
Polytechnique Fédérale de Lausanne. The diameter of the E-puck 
robot is 7 cm, 5 cm height with the wheel diameter of 4 cm; and 
the total weight of the DDER is 0.16 kg. The E-puck robot can 
move in the forward and backward directions; and it can turn with 
a top speed of 0.15 m/s. It includes eight IR sensors with eight 
LEDs. IR sensors of the E-puck robot can read the obstacles 
between 0.01 m to 0.06 m range approximately. Fig. 2 shows the 
top view of the E-puck robot with the distribution of the eight IR 

sensors from 𝑆0 to 𝑆8. The following IR sensors readings: 𝑆0, 𝑆1, 

𝑆6, and 𝑆7 are used during motion and orientation controls in the 
present study. The front senor obstacle reading (𝐷𝑓) takes the 

minimum data of 𝑆0 and 𝑆7. Similarly, the left senor obstacle 
reading (𝐷𝑙) is the least value of 𝑆6 and 𝑆7. Next, we use the 

minimum data of 𝑆0 and 𝑆1 as a right senor obstacle reading 

(𝐷𝑟). The data of 𝐷𝑓 , 𝐷𝑙 , and 𝐷𝑟 , along with left and right wheel 

velocities, are used in the GRNN architecture to control the motion 
and orientation of an E-puck robot. 

 
Fig. 1. Schematic representation of kinematic parts of an automated  
            differential-driven two-wheeled E-puck robot  
            in the two-dimensional rigid plane 

 
Fig. 2. Top view of an E-puck robot with the distribution  
           of eight IR sensors 

Further on, the E-puck robot consists of two independent 
driving wheels that carry the mechanical chassis of a robot. The 
two driving wheels attached with the two separate stepper motors 

drive the E-puck robot. The 𝑉𝐿 denotes the left wheel velocity, and 
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𝑉𝑅  indicates the right wheel velocity in the kinematic equations. 
The E-puck robot moves in the solid plane, and a rigid chassis 
makes it. The axes (𝑥𝑐 , 𝑦𝑐) are the current posture of the E-puck 

robot from the origin 𝑂 point in the global frame {𝑂, 𝑋, 𝑌}. In Fig. 

1, 𝜃 denotes the orientation angle of the E-puck robot with respect 
to an axis (𝑂, 𝑋), 𝑏 is the track width between the left and right 

wheel drive systems, 𝑟 is the radius of the driving wheels and 𝐶 is 
the center of the mass of E-puck robot system. The following 
kinematic equations control the velocities and steering angle of 
the E-puck robot: - 

𝑉𝑐 =
𝑟

2
∙ (𝜔𝑅 + 𝜔𝐿) =

(𝑉𝑅+𝑉𝐿)

2
           (1) 

𝜔𝑐 = 𝜃̇ =
𝑟

2
∙ (𝜔𝑅 − 𝜔𝐿) =

(𝑉𝑅−𝑉𝐿)

𝑏
           (2) 

where 𝑉𝑐  and 𝜔𝑐  represent the center (mean) linear velocity and 
center angular velocity of the E-puck robot, respectively, these 𝑉𝑐  

and 𝜔𝑐  control the motion and orientation of the E-puck robot in 

the V-REP software platform, respectively. Next, 𝜔𝑅  and 𝜔𝐿 
denote the angular velocities of the right and left wheel driving 
systems, respectively. 

Next, the following equations express the velocity (linear and 
angular) with respect to time (𝑡): - 

𝑑𝑥

𝑑𝑡
= 𝑥̇(𝑡) = 𝑉𝑐 ∙ cos 𝜃 =

𝑟

2
∙ (𝜔𝑅 + 𝜔𝐿) ∙ cos 𝜃         (3) 

𝑑𝑦

𝑑𝑡
= 𝑦̇(𝑡) = 𝑉𝑐 ∙ sin 𝜃 =

𝑟

2
∙ (𝜔𝑅 +𝜔𝐿) ∙ sin 𝜃         (4) 

𝑑𝜃

𝑑𝑡
= 𝜃̇(𝑡) = 𝜔𝑐 =

𝑟

𝑏
∙ (𝜔𝑅 − 𝜔𝐿)           (5) 

3. DESIGN OF A GRNN ARCHITECTURE FOR MOTION  
AND ORIENTATION PLANNING AND CONTROL  
OF AN E-PUCK ROBOT AMONG SCATTERED 
OBSTACLES IN THE V-REP SOFTWARE ENVIRONMENT 

This section reveals a brief description of a GRNN architec-
ture that controls the motion and orientation of an E-puck robot 
among scattered obstacles in the V-REP software platform. 
GRNN belongs to the family of the Statistical Neural Network 
(SNN) group, and the rest of this GRNN, the Radial Basis Func-
tion Neural Network and Probabilistic Neural Network are also the 
members of this SNN group. GRNN works based on the regres-
sion method, which was developed by Specht in 1991. The main 
advantage of this GRNN over the feedforward neural network is 
that it does not need an iterative-based training procedure 
(Specht, 1991). GRNN makes a linear or non-linear regression 
function between dependent variables (outputs) and independent 
variables (inputs) to provide the expected outcome. In the present 
work, the GRNN architecture takes the IR sensors data infor-

mation as three inputs (Df, Dl, and Dr) and wheel velocities (VL 

and VR) as two outputs of an E-puck robot. Tab. 1 reveals the 
inputs and outputs data set, which are fed into the GRNN archi-
tecture to control the motion and orientation of an E-puck robot in 
the V-REP software platform among scattered obstacles. The 
ranges of inputs (Df, Dl, and Dr) have taken from IR sensor 

range of an E-puck robot, and the ranges of outputs (VL and VR) 
are fixed between 0.063 m/sec to 0.150 m/sec. Fig. 3 shows the 
basic structure of the MIMO system GRNN architecture, which 

combines different layers. The GRNN architecture consists of four 
layers: an input layer, pattern layer, summation layer, and output 
layer. As shown in Fig. 3, the input layers connect the second 

pattern layer through the weight of the pattern layer (wp). Similar-

ly, each pattern layer is connected to the summation layer through 

the weight of the summation layer (ws). The summation layer can 
be divided into the D-summation and S-summation neurons. The 
different steps of the GRNN architecture can be represented as 
follows:  

𝐺 |
𝑣

𝑢
| =

∫ 𝑣∙𝑓(𝑢,𝑣)
∞
−∞ 𝑑𝑦

∫ 𝑓(𝑢,𝑣)
∞
−∞ 𝑑𝑦

                          (6) 

Eq. (6) expresses the regression equation of the dependent 

variable (𝑣) on the independent variable (𝑢). In Eq. (6), 𝑢 =
[𝑢1, 𝑢1, … , 𝑢𝑛]

𝑇 denotes the number of inputs, and 𝑣 =

[𝑣1, 𝑣1, … , 𝑣𝑗]
𝑇

 represents the number of outputs. Next, the 

function 𝑓(𝑢, 𝑣) calculates the probability density for 𝑢 and 𝑣. 

Tab. 1. Inputs and outputs data set for GRNN architecture 

𝑫𝒇 in 

meter 

𝑫𝒍 in 
meter 

𝑫𝒓 in 
meter 

𝑽𝑹 in 
meter/second 

𝑽𝑳 in 
meter/second 

0.01 0.024 0.01 0.075125 0.062125 

0.024 0.01 0.01 0.075125 0.0775 

0.01 0.01 0.024 0.0639 0.0775 

0.016 0.032 0.012 0.097875 0.071625 

0.032 0.016 0.012 0.097875 0.096375 

0.012 0.016 0.032 0.067875 0.099 

0.032 0.012 0.016 0.092625 0.101625 

0.032 0.032 0.032 0.098125 0.11025 

0.048 0.024 0.036 0.100375 0.124875 

0.024 0.048 0.036 0.100375 0.110375 

0.036 0.024 0.048 0.08225 0.12875 

0.014 0.022 0.03 0.0735 0.09625 

0.03 0.014 0.022 0.085375 0.102875 

0.022 0.03 0.014 0.098625 0.07775 

 

Fig. 3. The basic structure of the MIMO system GRNN architecture 

The input layer collects the information from inputs (𝑢) and 
stores this information. After getting inputs, the number of neurons 
is allotted to each input. Next, the input neurons of the input layers 
are sent to the pattern layer. The pattern layer uses a Gaussian 

function (𝜑𝑖) as follows: - 

𝜑𝑖 = 𝑒𝑥𝑝 {−
(𝑢−𝑈𝑖)

𝑇(𝑢−𝑈𝑖)

2𝜎2
}           (7)  

where 𝑖 = 1, 2,…,n; and 𝜎 represents the width or spread 
notation, which adjusts the value of final network outputs, the 
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present study takes 𝜎 = 1. 𝑈𝑖 is the training vector of the 𝑖th 
neuron in the pattern layer. In the fourth layer (final layer), the 

following function calculates the final outputs (𝑣𝑖) of GRNN 
architecture: 

𝑣𝑖 =
∑ 𝑤𝑖∙𝜑𝑖
𝑛
𝑖=1

∑ 𝜑𝑖
𝑛
𝑖=1

                                          (8)  

where 𝑤𝑖  makes the weight connection between the 𝑖th neuron of 
the pattern layer and summation layer node.  

4. EXPERIMENTAL RESULTS OF AN E-PUCK ROBOT 
AMONG THREE-DIMENSIONAL SCATTERED OBSTACLES 
AND COMPARISON WITH FEEDFORWARD NEURAL 
NETWORK (SINGH AND THONGAM, 2018)  
IN THE TWO-DIMENSIONAL PLATFORM 

This section reveals the motion and orientation results of 
GRNN architecture-controlled E-puck robot in the three-
dimensional (3D) V-REP software platform among scattered 
obstacles. Also, the feedforward neural network (Singh and 
Thongam, 2018) is selected for comparison in the 2D platform. 
The 3D simulation environments with an E-puck robot and 
scattered obstacles are built in the V-REP software. The GRNN 
architecture with inputs and outputs data set and the kinematic 
equation are scripted in the MATLAB programming language. The 
remote Application Program Interface (API) function makes an 
interface between the MATLAB and V-REP software. After 
interfacing, we run the MATLAB script, and simultaneously we 
start the simulation in V-REP software. The script sends the 
motion control command to the E-puck robot in the 3D V-REP 
software platform, and the GRNN architecture gives the right, and 
left wheel velocities command to the E-puck robot according to 
the front, left, and right IR sensor readings. Fig. 4 illustrates the 
snapshot of an automated differential-driven two-wheeled E-puck 
robot that performs the experiments in the 3D V-REP software 
platform among scattered obstacles. 

 
Fig. 4. Automated differential-driven two-wheeled E-puck robot 

Further on, Fig. 5 reveals the 3D motion control results of an 
E-puck robot among scattered obstacles in the V-REP software 
platform using a GRNN architecture. The axis size is taken 
230 × 230 cm2 in Fig. 5. Next, the E-puck robot begins the motion 
from (210 cm, 10 cm) and reaches the target location, placed at 
the left corner (10 cm, 210 cm). Five green color cuboids and four 
yellow color cylindrical obstacles are randomly placed in the 

software platform to test the performance of the GRNN 
architecture in an E-puck robot. At first, the E-puck robot goes to 
reach the target, and after moving some distance, the E-puck 
robot finds obstacles within the specified sensory range. Then 
GRNN architecture is activated and sends the left and right wheel 
velocity control command to E-puck robot to avoid the obstacles. 
Fig. 8 shows the real-time recorded angular velocities 
(degree/seconds) of a right wheel (magenta color) and left wheel 
(cyan color) of an E-puck robot during motion control in the V-REP 
software platform of Fig. 5. 

 

 
Fig. 5. 3D motion control results of an E-puck robot among scattered  
            obstacles in the V-REP software platform  
            using a GRNN architecture 
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Fig. 6. 3D motion control results of an E-puck robot among wall- 
            typeobstacles in the V-REP software platform  
            using a GRNN architecture 

 
Fig. 7. 3D motion control results of an E-puck robot among many  
            cylindrical shape obstacles in the V-REP software platform  
            using a GRNN architecture 

 
Fig. 8. Real-time recorded angular velocities (degree/seconds)  
            of a right wheel (magenta color) and left wheel (cyan color)  
            of an E-puck robot during motion control in the V-REP software  
            platform of Fig. 5 

Similarly, Fig. 9 displays the real-time recorded linear 
velocities (m/s) of a right wheel (yellow color) and left wheel (blue 
color) of an E-puck robot during motion control in the V-REP 
software platform of Fig. 5. As we can see in Fig. 5, the target 
(blue color small cuboid) is placed at the left corner, and that is 
why, most of the time, the E-puck robot takes a left turn to reach 
the goal. It means that the GRNN architecture increases the 
angular and linear velocity of the right wheel compared to the left 
wheel, as shown in Figs. 8 and 9, respectively. The E-puck robot 
covers 130 cm distance to reach the target from the starting 
location between scattered obstacles and takes 35 s. Figs. 6 and 
7 show the motion control results of an E-puck robot among wall-
type and many cylindrical shape obstacles in the V-REP software 
platform using a GRNN architecture, respectively. Further on, 
these figures present the different positions of an E-puck robot 

during navigation and obstacle avoidance in a single-single 
snapshot. The axis size is taken 230 × 230 cm2 in both Figs. 6 
and 7. In Fig. 6, the robot starts moving from (100 cm, 25 cm) and 
reaches the target location, placed at the coordinate (120 cm, 
200 cm). Similarly, in Fig. 7, the robot begins motion from (20 cm, 
20 cm) and reaches the target, located at the coordinate (210 cm, 
210 cm). In both these figures, it can be seen that after moving 
some distance, the sensors of the robot detect the obstacles. 
Then, the GRNN architecture is activated and provides the left 
and right wheel velocity control command to the E-puck robot to 
avoid wall-type and many cylindrically shaped obstacles and 
reach the target successfully without any collision. 

 
Fig. 9. Real-time recorded linear velocities (meter/seconds) of a right  
            wheel (yellow color) and left wheel (blue color) of an E-puck robot   
            during motion control in the V-REP software platform of Fig. 5 

 
Fig. 10. 2D motion planning and control comparison result between  
              proposed GRNN architecture and feedforward neural network  
              (Singh and Thongam, 2018) among scattered obstacles  
              in the same platform 

After obtaining the 3D motion-control results of an E-puck 
robot, we perform the comparative study between the proposed 
GRNN architecture and previously developed feedforward neural 
network (Singh and Thongam, 2018) in the same 2D platform. Fig. 
10 reveals the 2D motion planning and control comparison result 
between the proposed GRNN architecture and feedforward neural 
network (Singh and Thongam, 2018) among scattered obstacles. 
The purple color trajectory presents the GRNN architecture 
controlled motion result of an E-puck robot in Figure Fig. 10. 
Similarly, the red color trajectory shows the navigation result of a 
feedforward neural network (Singh and Thongam, 2018) driven E-
puck robot. As shown in Figure Fig. 8, the GRNN architecture 
controlled E-puck robot utilises a shorter distance to reach the 
target compared to the feedforward neural network (Singh and 
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Thongam, 2018) driven E-puck robot because GRNN provides 
accurate network output with minimal error (Specht, 1991). 
Further on, Tab. 2 compares the GRNN architecture and 

feedforward neural network (Singh and Thongam, 2018) in terms 
of trajectory path length and time. 

Tab. 2. Result comparison between the GRNN architecture feedforward neural network (Singh and Thongam, 2018)  
             in terms of trajectory path length and time 

Name of applied method 
Figure 

number 
Begin Target 

Trajectory 
path length 

(cm) 

Trajectory 
time 

(seconds) 

Trajectory 
path length 
error (cm) 

GRNN architecture Fig. 10 (210 cm, 10 cm) (10 cm, 210 cm) 130 cm 35 s 1.34 cm 

Feedforward neural network  
(Singh and Thongam, 2018) 

Fig. 10 (210 cm, 10 cm) (10 cm, 210 cm) 138 cm 38 s 2.91 cm 

 

5. CONCLUSION AND FUTURE WORK 

This article has presented the motion planning and control 
technique for an E-puck robot by applying GRNN architecture in 
the V-REP software platform among scattered obstacles. The 
GRNN architecture receives real-time obstacle information as 
inputs from the IR sensors of an E-puck robot. According to IR 
sensor data interpretation, this architecture sends the left and right 
wheel velocities command as outputs to the E-puck robot during 
navigation among obstacles. The programming of GRNN 
architecture and kinematic equations has been written in the 
MATLAB script. This script controls the motion and orientation of 
an E-puck robot in the V-REP software platform through the 
remote-API function. The different 2D and 3D simulation results 
demonstrate that the GRNN architecture successfully 
autonomously controls the motion and orientation of an E-puck 
robot. 

Moreover, as compared to the feedforward neural network 
(Singh and Thongam, 2018), the proposed GRNN architecture 
has provided better results in a short period with minimal error. 
Future work can include dynamic scattered obstacles instead of 
static obstacles. Also, this presented method can be used for 
motion and orientation control of multiple E-puck robots. 
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