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Abstract: According to the Green Deal, the carbon neutrality of the European Union (EU) should be reached partly by the transition  
from fossil fuels to alternative renewable sources. However, fossil fuels still play an essential role in energy production, and are widely 
used in the world with no alternative to be completely replaced with, so far. In recent years, we have observed the rapidly growing prices  
of commodities such as oil or gas. The analysis of past fossil fuels consumption might contribute significantly to the responsible formulation 
of the energy policy of each country, reflected in policies of related organisations and the industrial sector. Over the years, a number  
of papers have been published on modelling production and consumption of fossil and renewable energy sources on the level of national 
economics, industrial sectors and households, exploiting and comparing a variety of approaches. In this paper, we model the consumption 
of fossil fuels (gas and coal) in Slovakia based on the annual data during the years 1965–2020. To our knowledge, no such model,  
which analyses historical data and provides forecasts for future consumption of gas and coal, respectively, in Slovakia, is currently  
available in the literature. For building the model, we have used the Box–Jenkins methodology. Because of the presence of trend  
in the data, we have considered the autoregressive integrated moving average (ARIMA (p,d,q)) model. By fitting models with various  
combinations of parameters p, d, q, the best fitting model has been chosen based on the value of Akaike’s information criterion. According 
to this, the model for coal consumption is ARIMA(0, 2, 1) and for gas consumption it is ARIMA(2, 2, 2). 
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1. INTRODUCTION 

Passing the Green Deal in 2019, the European Union (EU) 
committed to turn Europe into the first climate-neutral continent. 
According to this, each EU member has set itself goals to be 
achieved by 2030. Slovakia has aimed towards the following 
goals: 

 to reduce greenhouse gas emissions by −20% until 2030 
compared with 2005; 

 to increase the share of energy from renewable sources in 
gross final consumption of energy to 19.2%; 

 to increase the energy efficiency by energy savings that will 
lead to 15.7 [Mtoe] for primary energy consumption and 10.3 
[Mtoe] for final energy consumption [1, 2]. 

Fulfilling these targets requires a reconsideration of the national 
strategy for energies. Fossil fuels are still an important part of the 
Slovak energy mix with a share of nearly 28% [3]. With respect to 
the EU targets, the use of coal should end entirely by 2030. Due 
to reduction of coal use, there has been an obvious switch from 
coal to gas in electricity production recently. In 2019, the volume 
of electricity produced in gas-fired power plants increased by 
about 11% in Europe, whereas the production of coal-fired power 
plants decreased by 24% [4]. In addition to power generation, 
thermal coal is used for operations, such as cement production 
and industrial and household heat applications, where alternatives 
are also being sought. Despite gas being considered the “greener” 
among fossil fuels, such status is only temporary, and in the fu-

ture, part of the gas consumption will be replaced with renewable 
sources (see, for example, Jandačka et al. [5] and Nandimanda-
lam et al. [6]). 

In this paper, we model and forecast coal and gas consump-
tion, respectively, in Slovakia by applying autoregressive integrat-
ed moving average (ARIMA) models. The ARIMA model is com-
monly used for modelling production and/or consumption of fuels. 
Dritsaki et al. [7] built the ARIMA model to forecast oil consump-
tion in Greece. The time series covering the period 1960–2020 
was modelled by the ARIMA(1,1,1) model and the forecasts for 
years 2021–2023 were calculated. Ozturk and Ozturk [8] forecast 
consumption of coal, oil, natural gas, renewable energy sources 
as well as of total energy, respectively, by modelling the historical 
data with the ARIMA models. Based on the predictions until the 
year 2040, they estimated the rate of increase to be between 4% 
and 5% for all the sources except that of the renewable energy 
sources, which have been expected to increase by about 1.6%. 
Akpinar and Yumusak [9] predicted a year-ahead demand for 
natural gas for household and low consumption consumers in 
Turkey. They applied three models – time series decomposition, 
ARIMA model and Holt–Winters exponential smoothing – for 
monthly consumption between the years 2011 and 2014. Among 
these considered models, the ARIMA model performed the best. 
Chaturvedi et al. [10] discussed and compared the performances 
of three models – the seasonal ARIMA (SARIMA) model, the Long 
Short-Term Memory Recurrent Neural Network (LSTM RNN) 
model, the Facebook (Fb) Prophet model and the Indian Central 
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Energy Authority (CEA) model as a reference model – for fitting 
the monthly total and peak energy demand in India. 

Recently, the ARIMA models have been combined with other 
methods for creating hybrid models in order to obtain more pre-
cise results. It is common to incorporate the artificial neural net-
work to model the non-linearity in the data, as the ARIMA model is 
able to describe only the linear relationship between the inputs 
and the output. Manowska et al. [11] forecast the natural gas 
consumption in Poland using the ARIMA–LSTM hybrid model. 
The residuals of the ARIMA model were further modelled by the 
LSTM neural network taking historical consumption and prices of 
energy resources, that is, crude oil, natural gas and thermal coal, 
as predictors of the model. Using this approach, the authors 
achieved the average percentage error of 2%. Based on the 
model, the predictions of natural gas consumption in Poland up to 
the year 2040 were constructed. Wang [12] predicted per capita 
coal consumption in China using the ARIMA-BP combined model. 
Proceeding from the hybrid model that combines the ARIMA 
model and the back-propagation neural network and simply sums 
these two models’ results, Wang improved the model accuracy by 
obtaining the predictions via multiple linear regression with the 
linear fitting of the ARIMA model and the non-linear fitting of the 
BP model as independent variables and the consumption as the 
dependent variable. The energy demand in China and India were 
forecast by Wang et al. [13], applying the rolling metabolic grey 
(MGM) model, the rolling metabolic grey – ARIMA (MGM-ARIMA) 
model and the non-linear metabolic grey (NMGM) model. Here, 
the MGM-ARIMA model combined the grey model and the ARIMA 
model in a different way as in the hybrid ARIMA artificial neural 
network models, mentioned previously. The ARIMA model was 
used to model the MGM model’s residuals to minimise their vola-
tility. According to the comparison of three considered models, the 
MGM-ARIMA model fitted the energy demand of India as the best 
one, and the energy demand of China as the second best, outper-
formed by the NMGM model. South Africa’s energy consumption 
was analysed and predicted by Ma and Wang [14]. They consid-
ered the ARIMA model, the nonlinear grey model (NGM) and the 
nonlinear grey – ARIMA model. Achieving the value of the mean 
average percentage error less than 3%, all three models made 
highly reliable predictions. 

The number of papers providing the prediction models regard-
ing the energy sector in Slovakia is scarce. Recently, Pavlicko et 
al. [15] forecast the electricity consumption in Slovakia by applying 
and comparing two approaches – grey models and multi-layer 
feed-forward back-propagation network. They also proposed a 
new model combining both approaches. Based on this model, the 
authors obtained more accurate maximum hourly electricity con-
sumption per day forecasts, compared with the official load predic-
tions. Brabec et al. [16] presented a non-linear mixed effect model 
that was able to predict the daily consumption of natural gas for 
an individual consumer. This model was applied on daily-recorded 
consumptions of 62 larger commercial entities in Slovakia and its 
performance was compared with performances of the ARIMAX 
and ARX model, respectively. Hošovský et al. [17] modelled the 
daily gas consumption considering three particular types of build-
ings, each in a different town in Slovakia. In the paper, they com-
pared the performance of reg(S)ARMA (the regression model with 
ARMA-modelled time series error terms) with regWANN (the 
regression wavelet neural network) model and the SARMA model 
as a reference model. However, as far as we have found out, no 
prediction model of gas or coal consumption for Slovakia as a 
country has been published. To fill this gap, we propose such 

models applying the Box–Jenkins methodology. These models 
can serve as reference models and the bases for further research. 

This paper is organised as follows: In Section 2, the time se-
ries used for study are characterised and their descriptive statis-
tics are given. In Section 3, we provide the methodology for build-
ing ARIMA models. In Section 4, the results of modelling process 
for coal and gas time series, respectively, are summarised. In 
addition, the forecasts for the next 10 years are made. The last 
section “Discussion and Conclusions” summarises and interprets 
the obtained results, and provides the proposals for future re-
search. All the calculations in the paper were conducted using 
MATLAB software, version R2020b. 

2. CHARACTERISTICS OF DATA 

Data modelled in the paper represent annual values of con-
sumption of fossil fuels in Slovakia. Namely, we analyse gas and 
coal consumption, respectively. The records cover the period of 
years 1965–2020, that is, the data count 56 observations for each 
commodity. The gas data are given in milliards of cubic metres; 
the coal data are given in exajoules. The data are obtained from 
the literature [18]. 

The descriptive statistics of datasets are summarised in Tab. 
1. The value of skewness of the coal data close to zero implies 
that the consumptions in the considered years are distributed 
almost symmetrically around the mean. On the other hand, the 
negative value of skewness for the gas consumption shows that 
higher consumptions dominate. The kurtosis values in both cases 
are greater than 1, indicating too peaked (leptokurtic) distributions. 

Tab. 1. The descriptive statistics for coal and gas dataset, respectively 

Statistic Coal [EJ] Gas [109 m3] 

Minimum 0.08296 0.29853 

Maximum 0.35881 7.17380 

Mean 0.23709 4.28430 

Variance 0.00572 3.78942 

Skewness −0.03980 −0.48146 

Kurtosis 1.79441 2.17448 

Lower quantile 0.17385 2.89133 

Median 0.24985 4.63595 

Upper quantile 0.29202 5.91770 

The presence of outliers, which indicate anomalies in the data, 
is checked by the boxplot. As shown in Fig. 1, there are no outli-
ers in the respective datasets of the commodities. 

3. METHODOLOGY 

In general, the process of modelling and analysing the time 
series contains several steps, namely: 

 graphical analysis of data, identification of components; 

 selection of the model, estimation of parameters; 

 checking the adequacy of the model in relation to the data; 

 forecast of future values. 
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3.1. Pre-analysis of data 

The first step in modelling the time series is its visualisation 
that enables us to identify the presence of particular components.  

 
Fig. 1. Boxplot of dataset (a) coal and (b) gas 

Generally, the time series includes the following components: 

 trend; 

 seasonal; 

 cyclic; 

 residual. 
A trend occurs in the data when there can be observed a long-

term change in the mean either as an increase, or as a decrease. 
However, there are cases when the trend is not monotonic. Sea-
sonality is represented by fluctuations with a fixed frequency. 
These fluctuations are related to the seasonal aspects, such as a 
season of the year, a day in the week, etc. Similar to seasonality, 
cycle is also represented by altering the increase and the de-
crease in the data. Contrary to the seasonal component, these 
fluctuations do not have a fixed frequency. Usually, they are ex-
plained as a consequence of business cycles in economics. The 
residual component represents random changes in the data. Time 
series of residuals should be a white noise. 

A stationary time series does not have a predictable pattern in 
the long-term. Therefore, the time series with trend or seasonality 
is not stationary. The verification of the presence of these compo-
nents in the series can be done by testing the series for stationari-
ty. There exist several stationarity tests. In this paper, we have 
selected the unit root tests, namely the augmented Dickey–Fuller 
(ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 
test. The ADF test tests the null hypothesis H0: there is a unit root 
in an autoregressive AR model (the data series is not stationary) 
against the alternative that the data series is stationary. The 
KPSS test works in a reverse manner to the ADF test since it tests 
the null hypothesis H0: there is no unit root in an AR model (the 
data series is stationary) against the alternative that there is a unit 
root in an AR model, thus the data series is not stationary. 

The results of these two tests should be interpreted as follows: 

 the time series is stationary when H0 in the ADF test is reject-
ed and H0 in the KPSS test cannot be rejected; 

 the time series is non-stationary when H0 in the ADF test 
cannot be rejected and H0 in the KPSS test is rejected [19, 
20]. 
The non-stationarity in the time series is eliminated by differ-

encing. 

3.2. ARIMA model 

The ARIMA models are based on regression models built on 
the observations themselves and on the residual component of 
the time series. The ARIMA(𝑝, 𝑑, 𝑞) model is given as follows: 

𝑦𝑡
′𝑐𝛼1𝑦𝑡−1

′ 𝛼2𝑦𝑡−2
′ 𝛼𝑝𝑦𝑡−𝑝

′ 𝜃1𝜀𝑡−1𝜃2𝜀𝑡−2 

          𝜃𝑞𝜀𝑡−𝑞𝜀𝑡 (1) 

where 𝑦𝑡
′ is the differenced series, 𝑐 is constant, 𝛼1,, 𝛼𝑝 are 

the coefficients of AR(𝑝) process, 𝑦𝑡−1
′ ,, 𝑦𝑡−𝑝

′  are lagged 

values of the differenced series, 𝜃1,, 𝜃𝑞 are coefficients of the 

MA(𝑞) process and 𝜀𝑡 ,, 𝜀𝑡−𝑞 are independent identically 

distributed error terms with zero mean. 

The parameters of the ARIMA(𝑝, 𝑑, 𝑞) model are as follows: 

 𝑝 is the order of the autoregressive part (the AR process); 

 𝑑 is the degree of differencing involved; 

 𝑞 is the order of the moving average part (MA process) [21]. 
The degree of differencing depends on the stationarity/non-

stationarity of the time series. A stationary time series has 𝑑  0. 
The values of parameter 𝑑  2 seldom occur. The order of the AR 
and the MA processes, respectively, can be estimated from the 
correlogram – a plot of autocorrelation coefficients (ACF), and 
from a plot of partial ACF (PACF). The estimates of the ACF are 
given as follows [20]: 

𝑟𝑘
∑ (𝑦𝑡−𝑦̅).(𝑦𝑡−𝑘−𝑦̅)𝑛

𝑡𝑘1

∑ (𝑦𝑡−𝑦̅)2𝑛
𝑡𝑘1

, 𝑘0,1,, 𝑛 − 1 (2) 

where 𝑦𝑡  are the observations, 𝑦̅ is the average of the observa-
tions; and the estimates of the PACF are given as follows [20]: 

𝑟11𝑟1,

𝑟𝑘𝑘
𝑟𝑘−∑ ( 𝑟𝑘−1,𝑗. 𝑟𝑘−𝑗)𝑘−1

𝑗1

1−∑  (𝑟𝑘−1,𝑗.𝑟𝑗)𝑘−1
𝑗1

, 𝑘1,

𝑟𝑘,𝑗𝑟𝑘−1,𝑗 − 𝑟𝑘𝑘 . 𝑟𝑘−1,𝑘−𝑗 , 𝑗1,2,𝑘 − 1.

 (3) 

The methodology for estimating the parameters of the ARIMA 
model from its ACF and PACF can be found in the literature [20]. 

(a) 

(b) 
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However, such estimation of the parameter orders is subjective; 
therefore, it is more convenient to use it as a supporting infor-
mation. 

In this paper, several ARIMA models with different combina-
tions of parameters are fitted to the time series. The coefficients of 
each model are found as maximum likelihood estimates. The best 
fitting model is chosen according to the smallest value of Akaike’s 
information criterion (AIC) [21] 

AIC − 2 log(𝐿) 2(𝑝𝑞𝑘1), (4) 

where log(𝐿) denotes the maximised value of log likelihood 

function, 𝑝, 𝑞 are the parameters of ARIMA model, 𝑘  1 if con-
stant 𝑐  0 and 𝑘  0 if 𝑐  0. 

3.3. Verification of the ARIMA model 

When the model is selected and the coefficients are estimat-
ed, we need to verify the model by checking whether the residu-
als, given as 

𝑒𝑡𝑦𝑡 − 𝑦𝑡̂ , (5) 

are a white noise. Here 𝑦𝑡̂  are the modelled values. A sequence 

of random variables 𝜀𝑡 is said to be a white noise under these 
conditions: 

 the mean is zero, 𝐸(𝜀𝑡)0; 

 the variance is constant, 𝐷(𝜀𝑡)𝜎2; 

 random variables are not correlated,  

𝑐𝑜𝑣(𝜀𝑡 , 𝜀𝑡−𝑘)𝑐𝑜𝑣(𝜀𝑡 , 𝜀𝑡𝑘). 

Furthermore, if the random variables 𝜀𝑡 are drawn from the 

standard normal distribution (𝜀𝑡𝑁(0, 𝜎2)), they are called 
Gaussian white noise. 

The absence of correlation among the residuals is tested by 
the Ljung–Box Q test that tests the null hypothesis H0: the residu-
als are not correlated, against the alternative that the residuals are 
correlated. When the H0 is rejected, the considered model of the 
time series is not adequate and it needs to be changed. 

Zero mean of residuals is tested using the t-test, when we test 
the hypothesis H0: the data come from a normal distribution with a 
mean equal to zero and unknown variance, against the alternative 
hypothesis HA: the population distribution does not have a mean 
equal to zero. 

The homoscedasticity (constant variance) of residuals is test-
ed by the two-sample F-test for equal variance. The normality of 
residuals can be tested by the Kolmogorov–Smirnov (KS) test or 
the Anderson–Darling (AD) test. 

The performance of the model for fitting the data may be also 
considered by the following measures: 

 the root mean square error (RMSE) 

RMSE√
1

𝑛
 ∑ 𝑒𝑡

2𝑛
𝑡1  (6) 

 the mean absolute percentage error (MAPE) 

MAPE
1

𝑛
. ∑

|𝑒𝑡|

𝑦𝑡

𝑛
𝑡1 . 100% (7) 

 the mean percentage error (MPE) 

MPE
1

𝑛
 ∑

𝑒𝑡

𝑦𝑡

𝑛
𝑡1  (8) 

Here 𝑛 is sample size. 

4. RESULTS 

In this section, we summarise the results obtained when mod-
elling the coal and the gas time series, respectively, in accordance 
with the procedure described in the Methodology section. 

4.1. Coal time series 

The visualisation of the time series is presented in Fig. 2. As 
we can see, the series is obviously decreasing with no fluctuations 
of a fixed frequency.  

 
Fig. 2. The time series of coal consumption in Slovakia  

during the years 1965–2020 

The presence of trend is indicated also by the correlogram of 
the time series (Fig. 3). The slow decrease of the ACF is caused 
by a strong correlation between the consecutive observations. 

 
Fig. 3. The correlogram of the coal time series 

We conduct the unit root tests on the significance level 

𝛼0.05. The p-value of the ADF test and the KPSS test, respec-
tively, are summarised in Tab. 2. 
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Tab. 2. Unit root tests for the coal time series 

Original time series ADF test KPSS test 

p-value 0.2845 0.0100 

According to the p-value of the ADF test, the null hypothesis 
cannot be rejected on the significance level 𝛼0.05; according to 
the p-value of the KPSS test, we reject the null hypothesis on the 

significance level 𝛼0.05. The time series is non-stationary. 
To eliminate the trend in the data, we replace the original se-

ries with the series of differences between the consecutive obser-
vations. This time series of first-order differences is also tested for 
stationarity. The p-value of the ADF test and the KPSS test, re-
spectively, are presented in Tab. 3. 

Tab. 3. Unit root tests for the first-order difference series (coal) 

Series of first-order differences ADF test KPSS test 

p-value 0.0159 0.0449 

According to the p-value of the ADF test, we reject the null 
hypothesis on the significance level 𝛼0.05; according to the p-
value of the KPSS test, we also reject the null hypothesis on the 

significance level 𝛼0.05. Because of the conflicting results of 
both tests for the series of differenced data, we cannot make any 
conclusions whether this series is stationary or not. Therefore, we 
calculate the differences of the consecutive observations of the 
differenced time series and test the stationarity of the time series 
of second-order differences. We summarise the p-value of the 
ADF test and the KPSS test, respectively, in Tab. 4. 

Tab. 4. Unit root tests for the second-order difference series (coal) 

Series of second-order differences  ADF test KPSS test 

p-value 0.0010 0.1000 

On the significance level 𝛼  0.05, we reject the null hypoth-
esis of the ADF test, while we do not reject the null hypothesis of 
the KPSS test. We may conclude that the series of second-order 
differences is stationary. 

We fit the ARIMA models with parameters considered as fol-
lows: 

𝑑{1,2};  𝑝{0,1,2};  𝑞{0,1,2}. (9) 

The values of parameter 𝑑 are determined by results of the 
unit root tests; the values of the other two parameters are consid-
ered to not exceed 2 because higher values occur only seldom. 
The best fitting model is chosen according to the AIC value. The 
ARIMA models along with their AIC values are in Tab. 5. 

Tab. 5. The fitted ARIMA models 

ARIMA model 𝐥𝐨𝐠(𝑳) AIC 

(1,1,0) 159.299 −314.597 

(0,1,1) 159.011 −314.022 

(1,1,1) 160.896 −315.792 

(2,1,0) 160.158 −314.315 

(0,1,2) 159.637 −313.274 

(1,1,2) 160.937 −313.874 

(2,1,1) 160.925 −313.849 

(2,1,2) 162.585 −315.171 

(1,2,0) 154.658 −305.316 

(0,2,1) 160.246 −316.492 

(1,2,1) 160.275 −314.550 

(2,2,0) 157.471 −308.942 

(0,2,2) 160.273 −314.546 

(1,2,2) 160.275 −312.551 

(2,2,1) 160.465 −312.929 

(2,2,2) 162.163 −314.327 

The smallest value of the AIC is achieved by the 

MA(0,2,1) model, which means that the second-order differ-

ences of time series follow the MA(1) model in the form 

𝑦𝑡
′′𝜀𝑡 − 0.859𝜀𝑡−1 (10) 

where 𝑦𝑡
′′ is a series of second-order differences, 𝜀𝑡 , 𝜀𝑡−1 are the 

independent identically distributed error terms with zero mean. 
The model fitted to the time series is depicted in Fig. 4. 

We verify the model by checking the residuals. The results of 
the tests are summarised in Tab. 6. 

Tab. 6. The p-values of the tests for verification of the model 

Ljung-Box 
Q test 
(p-value) 

t-test 
(p-value) 

Two-sample 
F-test 
(p-value) 

AD test 
(p-value) 

0.8534 0.4028 0.0626 0.2188 

According to the p-values of all the tests, we may conclude 

that on the significance level 𝛼  0.05, the residuals of the model 
are not autocorrelated and are normally distributed with constant 
variance. Thus, the residual time series is a white noise. 

 
Fig. 4. Model ARIMA(0,2,1) fitted to the coal time series 

The performance of the model is assessed by the measures 
RMSE, MAPE and MPE, respectively; the results are given in 
Tab. 7. The measure MPE indicates that the majority of errors is 
negative, which means that the model systematically overesti-
mates the reality. According to MAPE, the mean absolute per-
centage error between the consumption of coal predicted by the 
model and the actual consumption is 4.75%. 
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Tab. 7. Performance of the ARIMA(0,2,1) model for the coal time series 

RMSE MAPE MPE 

0.0138 4.7506 0.9684 

Based on the fitted model, we may forecast future coal con-
sumption. The forecasts for years 2021–2030 are presented in 
Tab. 8 and visualised in Fig. 5. 

Tab. 8. The forecast of coal consumption for years 2021–2030 

Year Point 

forecast 

Lower 95% 

confidence level 

Upper 95% 

confidence level 

2021 0.072525 0.04462 0.10042 

2022 0.06207 0.01896 0.10519 

2023 0.05163 −0.00573 0.10900 

2024 0.04119 −0.03039 0.11277 

2025 0.03075 −0.05531 0.11681 

2026 0.02031 −0.08063 0.12125 

2027 0.00987 −0.10641 0.12614 

2028 −0.00057 −0.13267 0.13152 

2029 −0.01102 −0.15943 0.13740 

2030 −0.02146 −0.18669 0.14378 

 
Fig. 5. Coal consumption in years 1965–2030  
           (actual values and forecast) 

4.2. Gas time series 

The visualisation of the gas time series is in Fig. 6. As we can 
see, the series is increasing with no obvious seasonality. 

Similarly as in the coal time series, the presence of a trend is 
indicated also by the correlogram of the time series (Fig. 7) where 
the ACF only slowly decrease. 

We conduct the unit root tests on the significance level 

𝛼  0.05. The p-values of the ADF test and the KPSS test are 
presented in Tab. 9. 

According to the p-value of the ADF test, the null hypothesis 

cannot be rejected on the significance level 𝛼  0.05; according 
to the p-value of the KPSS test, we reject the null hypothesis on 
the significance level 𝛼  0.05. This proves our assumption that 
the time series is non-stationary. 

To eliminate the trend in the data, we transform the series by 
differencing. Then we test the stationarity of the first-order differ-

ence series and draw a conclusion from the p-values of the ADF 
test and the KPSS test (Tab. 10). 

 
Fig. 6. The time series of gas consumption in Slovakia  

during the years 1965–2020 

 
Fig. 7. The correlogram of the gas time series 

Tab. 9. Unit root tests for the gas time series 

Original time series ADF test KPSS test 

p-value 0.8200 0.0100 

Tab. 10. Unit root tests for the first-order difference series (gas) 

First-order difference series  ADF test KPSS test 

p-value 0.0046 0.0327 

Just as for the coal time series, according to the p-value of the 
ADF test, we reject the null hypothesis on the significance level 

𝛼  0.05. According to the p-value of the KPSS test we also 
reject the null hypothesis on the significance level 𝛼  0.05. 
Because of the conflicting results of both tests for the first-order 
difference series we cannot make any conclusions whether the 
series is stationary or not. We replace this series with the series of 
the differences of its consecutive observations and test the sta-
tionarity of such second-order difference series. Tab. 11 presents 
the p-values of the ADF test and the KPSS test. 

Tab. 11. Unit root tests for the second-order difference series (gas) 

Second-order difference series  ADF test KPSS test 

p-value 0.0010 0.1000 

3
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On the significance level 𝛼  0.05 we reject the null hypothe-
sis of the ADF test, while we do not reject the null hypothesis of 
the KPSS test. We may conclude that the second-order difference 
series is stationary. 

We fit the ARIMA models with parameters considered as fol-
lows: 

𝑑{1,2};  𝑝{0,1,2};  𝑞{0,1,2}. (11) 

Again, the values of parameter 𝑑 are determined by results of 
the unit root tests. The best fitting model is chosen according to 
the smallest AIC value. The ARIMA models along with their AIC 
are in Tab. 12. 

Tab. 12. The fitted ARIMA models 

ARIMA model 𝐥𝐨𝐠(𝑳) AIC 

(1,1,0) −30.391 64.782 

(0,1,1) −30.495 64.990 

(1,1,1) −30.324 66.647 

(2,1,0) −29.997 65.995 

(0,1,2) −29.216 64.432 

(1,1,2) −27.788 63.577 

(2,1,1) −27.995 63.991 

(2,1,2) −27.788 65.576 

(1,2,0) −40.226 84.452 

(0,2,1) −30.115 64.229 

(1,2,1) −29.342 64.685 

(2,2,0) −31.455 68.910 

(0,2,2) −28.829 63.658 

(1,2,2) −28.708 65.415 

(2,2,1) −29.285 66.569 

(2,2,2) −25.210 60.419 

The smallest value of the AIC is obtained by the 

MA(2,2,2) model, which means that the series of second-order 
differences follow the ARMA(2,2) model in the form 

𝑦𝑡
′′ − 1.1375𝑦𝑡−1

′′ − 0.3978𝑦𝑡−2
′′ 𝜀𝑡 − 0.8086𝜀𝑡−2 (12) 

where 𝑦𝑡
′′ is the second-order difference series, 𝜀𝑡 , 𝜀𝑡−2 are the 

independent identically distributed error terms with zero mean. 
The model fitted to the time series is shown in Fig. 8. 

We verify the model by checking the residuals. The results of 
the tests are summarised in Tab. 13. According to the p-values of 
the tests, we may conclude that on the significance level 
𝛼  0.05, the residuals of the model are not autocorrelated, they 
have constant variance but do not come from the normal distribu-

tion 𝑁(0, 𝜎2), that is, the residual time series is a white noise, 
not Gaussian white noise. 

The performance of the model is assessed by the measures 
RMSE, MAPE and MPE; the results are given in Tab. 14. 
The value of MPE indicates that the majority of errors is positive, 
which means that the model systematically underestimates the 
reality. According to the value of MAPE, the mean absolute per-
centage error between the consumption of gas predicted by the 
model and the actual consumption is 7.88%. 

Based on the fitted model, we predict the annual gas con-
sumption. The forecasts for years 2021–2030 are given in Tab. 15 
and visualised in Fig. 9. 
 

Fig. 8. The model ARIMA(2,2,2) fitted to the gas time series 

Tab. 13. The p-values of tests for verification of the model 

Ljung-Box 

Q test 

(p-value) 

t-test 

(p-value) 

Two sample 

F-test 

(p-value) 

AD test 

(p-value) 

0.8489 0.5287 0.4288 0.0258 

Tab. 14. Performance of the ARIMA(0,2,1) model for the gas time series 

RMSE MAPE MPE 

0.3824 7.8804 0.3135 

Tab. 15. The forecast of gas consumption for years 2021–2030 

Year Point 

forecast 

Lower 95% 

confidence level 

Upper 95% 

confidence level 

2021 4.8126 4.0378 5.5875 

2022 4.8620 3.7920 5.9320 

2023 4.8091 3.5133 6.1048 

2024 4.7933 3.1506 6.4360 

2025 4.7736 2.8838 6.6634 

2026 4.7439 2.5213 6.9665 

2027 4.7277 2.2143 7.2411 

2028 4.6993 1.8550 7.5436 

2029 4.6801 1.5114 7.8489 

2030 4.6547 1.1438 8.1656 

 
Fig. 9. Gas consumption in years 1965–2030 (actual values and forecast) 
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5. DISCUSSION AND CONCLUSIONS 

In the paper, we modelled the time series of coal and gas 
consumption, respectively, in Slovakia during the years 1965–
2020 by applying the ARIMA(𝑝, 𝑑, 𝑞) models. Because of the 

trend in each time series, parameter 𝑑  0. After fitting several 

models with various combinations of parameters 𝑝, 𝑑, 𝑞, we have 
chosen the ARIMA(0,2,1) model for the coal consumption and 

the ARIMA(2,2,2) model for the gas consumption, respectively, 
as they achieved the smallest values of AIC. The results of the 
Ljung–Box test verified that for each time series, the chosen 
ARIMA model explains all the autocorrelation in the series, there-
fore it is adequate for modelling the actual time series and can be 
used for predicting future values. The values of MAPE less than 
10% (4.75% for coal and 7.88% for gas) indicate that the fitted 
ARIMA models provide reliable predictions. 

Based on the constructed forecasts, we can formulate the fol-
lowing conclusions: 

 coal consumption shall follow the decrease that has been 
observed in recent years. According to the forecast, close to 
zero coal consumption will be achieved between years 2027 
and 2028. Such a scenario is in agreement with the obliga-
tions of Slovakia to finish the electricity production from coal 
by 2030 (as electricity production alongside households heat-
ing is one of main coal consumers); 

 the gas consumption in the next decade exhibits a very mild 
decrease, almost a stagnation. 
Although there is no other model that can be used for compar-

ison, we can compare our predictions of the gas consumption with 
official predictions reported by the Ministry of Economy of Slovak 
Republic. The ministry issues annually a Report on the results of 
gas supply security monitoring (Správa o výsledkoch moni-
torovania bezpečnosti dodávok plynu), where it is summarised the 
consumption, the production and the import during the year. In 
addition, the ministry provides the prognosis of development in the 
consumption and the production for the following period, including 
the predictions for the next 5 years. The predictions for years 
2021–2025 are presented in Tab. 16. The methodology for obtain-
ing the forecasts declared by the ministry is not available. 

Tab. 16. Predictions of gas consumption for years 2021–2025 

Year 

Gas consumption [109 m3] 

Predictions from the 
Ministry of Economy [22] 

Point forecasts from 
the ARIMA(2,2,2) model 

2021 5.1 4.8126 

2022 5.0 4.8620 

2023 5.0 4.8091 

2024 5.0 4.7933 

2025 5.0 4.7736 

According to the report [22], the Ministry anticipates the stag-
nation of consumption on the level of approx. 5.0 [109 m3] in the 
upcoming years. In our predictions, we observe that after the 
increase in previous years, the consumption should start to slowly 
decrease. This predicted decrease of consumption can be caused 
by the situation in 2020. The COVID-19 pandemic brought re-
strictions to our everyday lives, influencing everything, including 
the industrial sector as the main gas consumer in Slovakia. To 
avoid the influence of unpredictable changes in 2020, Wang et al. 
[23, 24] suggested to consider the consumption from a COVID-

free scenario simulation instead of the real consumption in 2020. 
It is of further research to estimate the influence of the pandemic 
on the future gas consumption, comparing the predictions for the 
original time series and the time series adjusted by the simulation. 

To sum it up, the target to build a prediction model for the coal 
and the gas consumption, respectively, in Slovakia has been 
achieved. Both ARIMA models provide very good fit to the time 
series. Taking these results as reference models, we can carry on 
with the research in the future by applying other approaches, such 
as artificial neural networks, grey models, and by building hybrid 
models in order to improve the fit of the model to the data, and to 
obtain more precise predictions. 

Making responsible energy policy requires trustworthy predic-
tions. Therefore, we hope that the proposed models will be of help 
to the authorities when preparing future strategies. 
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