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Abstract: Vibration analysis of industrial robots is one of the key issues in the context of robotisation of machining processes.  
Low-frequency vibrations result from flexibility in manipulator joints. Within the scope of the article, a model of a two-link robot manipulator 
was built. Dynamic equations of motion were formulated to study the influence of the robot arm configuration on vibration effects. Based  
on numerical simulations, the frequency spectrum of vibrations of the robot’s links was determined, and tests were carried out in a number 
of configurations, obtaining a map of resonant frequencies depending on the configuration of the manipulator. Experimental studies  
were then carried out, which confirmed the conclusions from the simulation studies. The results obtained confirm that the positioning  
of the manipulator’s links has a significant effect on vibration effects. Tests conducted using a vision system with a motion amplification 
application made it easier to interpret the results. The formulated mathematical model of the manipulator generates results that coincide 
with the results of experimental studies. 
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1. INTRODUCTION  

Nowadays, industrial robots are increasingly used in many 
sectors of industry, such as machining, assembly and welding 
processes. For machining operations, industrial robots provide an 
economical and flexible alternative to standard CNC machine 
tools [1]. Machining operations performed by CNC machine tools 
provide greater accuracy and process stability. However, their 
maintenance costs are higher, and their movement capabilities 
are lower than those of robots. Therefore, CNC machines are 
often replaced by industrial robots [2]. The studies in Ref [2, 3] 
present general technical limitations of robots that occur during 
robotic machining processes, that is, accuracy, flexibility and 
possibility of excitation of robot resonant frequencies. The stability 
of operation during robotic machining is related to the stiffness of 
the robot and the vibrations that occur during machining. There-
fore, research is being conducted to reduce the impact of negative 
effects occurring during robotic machining processes, among 
others vibrations. The most common applications of robots in 
machining processes include grinding, deburring and milling in 
soft materials [4, 5]. Proper planning of these processes requires 
the knowledge of the dynamic properties of the robot, so as not to 
excite, for example, its resonant vibrations. Identification of a 
mathematical model of the robot’s mechanical structure is possi-
ble in the following experiments: modal analysis, measurement of 
the stiffness of the robot’s structural elements and measurement 
of the stiffness in the manipulator’s workspace [1]. Based on a 
review of existing solutions, examples of the application of the 
modal analysis of ABB and KUKA robots were found. In the stud-
ies in Ref [1, 6, 7, 8], modal analysis of KUKA manipulators was 
carried out to determine the frequencies of resonant vibrations. 

Impulse excitation generated using an impact hammer was used 
to excite the vibration, and the frequency response function was 
determined. The presented studies showed the dependence of 
the effect of the position of the robot arm on the excited natural 
frequencies. The studies in Ref [2, 8] presented an experimental 
modal analysis for an ABB manipulator. The study in Ref [9] ex-
tends the frequency determination problem to include an uncer-
tainty analysis of the determination of resonance zones. The study 
in Ref [10] allows the determination of modal parameters of robots 
under static conditions. The study in Ref [8] presents a position-
dependent control methodology to actively damp end effector 
vibration during robotic machining processes. The study in Ref 
[11] presents a hybrid vibration control of an industrial composite 
robotic manipulator based on a reduced order model. In the study 
in Ref [12], a method using machine intelligence was used to 
control the open-loop vibration of manipulators. 

There are three main approaches to modelling the dynamics 
of industrial robots: modelling the robot as a system of rigid bodies 
with no flexibility and no joint backlash [13, 14], modelling with 
flexibility and backlash in joints [15, 16, 17, 18] and modelling with 
link flexibility [19, 20, 21]. The study in Ref [22] presents a modi-
fied method of modelling flexible robotic manipulators for use in 
dynamic analysis. 

Models of manipulators, taking into account the flexibility of 
the joints [23], created for control purposes include a model of the 
drives, and then an underactuated system is obtained. The study 
of such a model is complex because, in addition to the movement 
of the arm, there are vibration phenomena and a complex problem 
of motion control. Modal models are also built based on the re-
sults of the experiments [24]. The aim of this study is to create the 
simplest possible analytical model of a robot that takes into ac-
count the vibration phenomena at selected positions of the robot 
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arm, without taking into account the influence of the arm move-
ment on the vibration. 

The article presents a model of a two-link robot manipulator, 
taking into account the flexibility of joints. The dynamic equations 
of motion of the manipulator were formulated using the Lagrangi-
an approach. The purpose of the modelling was to determine the 
effect of the robot arm configuration on vibration effects. Due to 
the complexity of the equations of motion, properties were studied 
using numerical methods. The frequency spectrum of vibrations of 
the robot’s links was determined. The study was carried out in 
many configurations, obtaining a map of resonant frequencies 
depending on the configuration of the robot. The results of theo-
retical analysis were confirmed by the results of a number of 
experimental tests. The main contribution of the research is the 
determination of the frequencies and modes of resonant vibrations 
using the experimental method and the formulation of a mathe-
matical model of the dynamics of the robot arm, taking into ac-
count the flexibility of the joints. 

The purpose of the modal analysis presented in this article is 
to determine the value of the resonant frequency and its depend-
ence on the current position of the robot. The variability of the 
values of the resonant frequencies can lead to their activation in 
certain configurations, although the parameters of the processes 
to be carried out remain constant. The knowledge of the dynamic 
properties of the robot, which are of a vibrational nature, makes it 
possible to avoid resonances by correctly designing the robotic 
processes. This applies, for example, to robotic machining. 

In the case of a typical industrial robot with six degrees of 
freedom, there will be no new phenomena, but there will be an 
accumulation of those that are present in a two-part robot. Hence, 
the model will be qualitatively the same. This article, however, 
draws attention to the occurring phenomena and presents the 
possibilities of their analysis. The simplification of modelling only 
two degrees of freedom of the robot makes it easier to present the 
results and understand the analysed phenomena. 

2. MODEL OF MANIPULATOR 

To analyse the influence of the manipulator configuration on 
vibration effects, a model of a two-link planar manipulator was 
adopted, the schematic diagram of which is shown in Fig. 1. It 
consists of two articulated links that have the ability to move in the 
xy plane. The model takes into account the flexibility in joints A 
and B, which is the cause of low-frequency vibration of the manip-
ulator. Point C is the end point of the arm, while points S1 and S2 
are the centres of mass of links 1 and 2, respectively. 

Low-frequency vibrations of robots result from flexibility in the 
joints, that is, at points A and B. They involve the rotational oscilla-
tory motion of the links relative to the joints. To account for them, 

it can be assumed that each configuration coordinate, that is, q1 
and q2, can be expressed as the sum of two angular values: 

{
𝑞1 = 𝛽1 + 𝛼1

𝑞2 = 𝛽2 + 𝛼2
             (1) 

where 𝛽1 and 𝛽2 are the values describing the positions of the 
manipulator’s links, relative to which the oscillations of these links 

occur, expressed by the variables 𝛼1 and 𝛼2. In the ideal case, 
when no oscillations occur, 𝛽1 and 𝛽2 are simply the same as the 

configuration coordinates 𝑞1 and 𝑞2. When the flexibility in the 

joints is taken into account, the angles 𝛼1 and 𝛼2 are fast-variable 

values related to the vibration effects of the robotic arm, while 𝛽1 

and 𝛽2 are slow-variable values whose changes result from the 
realisation of the motion trajectory, or alternatively, they are con-
stant values if the robotic arm is in a fixed position. 

 
Fig. 1. A two-link planar manipulator with flexible joints 

The equations of motion of the manipulator were formulated 
using the Lagrangian approach. For this purpose, the potential 
energy was determined first, followed by the kinetic energy of the 
manipulator. 

The potential energy of the system is the sum of the potential 
energies of the masses in the earth’s gravitational field and the 
potential energies of the elastic elements at the joints: 

𝑉 = 𝑉𝑘1 + 𝑉𝑘2 + 𝑉𝑔1 + 𝑉𝑔2           (2) 

where 𝑉𝑘1 and 𝑉𝑘2 are the potential energies of the elastic joints 

of links 1 and 2, and 𝑉𝑔1 and 𝑉𝑔2 are the potential energies of the 

masses of links 1 and 2 in the gravitational field. They are de-
scribed by the following equations: 

𝑉𝑘1 =
1

2
𝑘1(𝛼1 + 𝛼1𝑠𝑡)2            (3) 

𝑉𝑘2 =
1

2
𝑘2(𝛼2 + 𝛼2𝑠𝑡)2            (4) 

𝑉𝑔1 = 𝑚1𝑔𝑙𝑐1𝑠𝑖𝑛(𝛽1 + 𝛼1)                         (5) 

𝑉𝑔2 = 𝑚2𝑔[𝑙1𝑠𝑖𝑛(𝛽1 + 𝛼1) + 𝑙𝑐2𝑠𝑖𝑛(𝛽1 + 𝛽2 + 𝛼1 + 𝛼2)]

              (6) 

in which 𝑘1 and 𝑘2 are the elastic coefficients of the joints 1 and 2 

(at points A and B), respectively; 𝛼1𝑠𝑡 and 𝛼2𝑠𝑡 are the static 
deformations of the joints under the influence of moments from 

the gravity forces of the links, 𝑚1 and 𝑚2 are the masses of links 

1 and 2, respectively; 𝑙1 is the length of link 1; and 𝑙𝑐1 and 𝑙𝑐2 are 
the distances of the centres of mass of the links from the joints 
(distances AS1 and BS2). The trigonometric functions appearing 
in Eqs. (5) and (6) can be decomposed as follows: 

𝑠𝑖𝑛(𝛽1 + 𝛼1) = 𝑠𝑖𝑛 𝛽1 𝑐𝑜𝑠 𝛼1 + 𝑐𝑜𝑠 𝛽1 𝑠𝑖𝑛 𝛼1 = 𝑠𝑖𝑛 𝛽1 +
𝛼1 𝑐𝑜𝑠 𝛽1             (7) 

𝑠𝑖𝑛(𝛽1 + 𝛽2 + 𝛼1 + 𝛼2) = 𝑠𝑖𝑛(𝛽1 + 𝛽2) 𝑐𝑜𝑠(𝛼1 + 𝛼2) +
𝑐𝑜𝑠(𝛽1 + 𝛽2) 𝑠𝑖𝑛(𝛼1 + 𝛼2) = 𝑠𝑖𝑛(𝛽1 + 𝛽2) +
(𝛼1 + 𝛼2) 𝑐𝑜𝑠(𝛽1 + 𝛽2)                          (8) 
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where the following approximations are considered in the second 

step of the transformation: sin 𝛼1 = 𝛼1, cos 𝛼1 = 1, sin(𝛼1 +
𝛼2) = 𝛼1 + 𝛼2, cos(𝛼1 + 𝛼2) = 1. These are due to the fact 

that the angular coordinates 𝛼1 and 𝛼2 describing the vibration 
have small values. The total potential energy, taking into account 
the linearisation performed, is given as follows: 

𝑉 =
1

2
𝑘1(𝛼1

2 + 2𝛼1𝛼1𝑠𝑡 + 𝛼1𝑠𝑡
2 ) +

1

2
𝑘2(𝛼2

2 + 2𝛼2𝛼2𝑠𝑡 +

𝛼2𝑠𝑡
2 ) + 𝑚1𝑔𝑙𝑐1(𝑠𝑖𝑛 𝛽1 + 𝛼1 𝑐𝑜𝑠 𝛽1) + 𝑚2𝑔𝑙1(𝑠𝑖𝑛 𝛽1 +

𝛼1 𝑐𝑜𝑠 𝛽1) + 𝑚2𝑔𝑙𝑐2 𝑠𝑖𝑛(𝛽1 + 𝛽2) + 𝑚2𝑔𝑙𝑐2(𝛼1 +
𝛼2) 𝑐𝑜𝑠(𝛽1 + 𝛽2)            (9) 

The static deformations of the joints were determined using 
the Dirichlet criterion. For this purpose, the derivatives of the 

potential energy (9) were determined after the coordinates 𝛼1 and 

𝛼1, which are equal to zero at the static equilibrium position de-
fined by the values 𝛼1 = 𝛼2 = 0, that is, they satisfy the follow-
ing conditions: 

𝜕𝑉

𝜕𝛼1
|

𝛼1=0,𝛼2=0
=

𝑘1(𝛼1 + 𝛼1𝑠𝑡) + (𝑚1𝑔𝑙𝑐1 + 𝑚2𝑔𝑙1) 𝑐𝑜𝑠 𝛽1 +
𝑚2𝑔𝑙𝑐2 𝑐𝑜𝑠(𝛽1 + 𝛽2) = 0          (10) 

𝜕𝑉

𝜕𝛼2
|

𝛼1=0,𝛼2=0
= 𝑘2(𝛼2 + 𝛼2𝑠𝑡) + 𝑚2𝑔𝑙𝑐2 𝑐𝑜𝑠(𝛽1 + 𝛽2) =

0                 (11) 

From Eqs. (10) and (11), static deformations were calculated 
as follows: 

𝛼1𝑠𝑡 = −
(𝑚1𝑔𝑙𝑐1+𝑚2𝑔𝑙1)

𝑘1
𝑐𝑜𝑠 𝛽1 −

𝑚2𝑔𝑙𝑐2

𝑘1
𝑐𝑜𝑠(𝛽1 + 𝛽2)    (12) 

𝛼2𝑠𝑡 = −
𝑚2𝑔𝑙𝑐2

𝑘2
𝑐𝑜𝑠(𝛽1 + 𝛽2)         (13) 

Taking into account the static deformations (12) and (13) in 

Eq. (9), and omitting 𝛼1𝑠𝑡
2  and 𝛼2𝑠𝑡

2  as small values of higher 

order than 𝛼1𝑠𝑡 and 𝛼2𝑠𝑡, the potential energy can be written in 
the following form: 

𝑉 =
1

2
𝑘1𝛼1

2 +
1

2
𝑘2𝛼2

2 + 𝑚1𝑔𝑙𝑐1 𝑠𝑖𝑛 𝛽1 + 𝑚2𝑔𝑙1 𝑠𝑖𝑛 𝛽1 +

𝑚2𝑔𝑙𝑐2 𝑠𝑖𝑛(𝛽1 + 𝛽2)          (14) 

The kinetic energy of the system is the sum of the kinetic en-
ergies of all links: 

𝐸 = 𝐸1 + 𝐸2           (15) 

where the kinetic energy of link 1 is the energy of the solid in 
rotation relative to point A: 

𝐸1 =
1

2
𝐼𝐴

(1)
𝑞̇1

2           (16) 

and the kinetic energy of link 2 is the energy of plane motion 
understood as the sum of the progressive motion of the link’s 
centre of mass (point S2) and rotational motion relative to the 
link’s centre of mass: 

𝐸2 =
1

2
𝑚2𝑣𝑆2

2 +
1

2
𝐼𝑆2

(2)(𝑞̇1 + 𝑞̇2)2         (17) 

Thus, the kinetic energy is as follows: 

𝐸 =
1

2
𝐼𝐴

(1)
𝑞̇1

2 +
1

2
𝑚2𝑣𝑆2

2 +
1

2
𝐼𝑆2

(2)(𝑞̇1 + 𝑞̇2)2        (18) 

where 𝐼𝐴
(1)

 is the mass moment of inertia of link 1 defined relative 

to point A and 𝐼𝑆2
(2)

 is the mass moment of inertia of link 2 defined 

relative to the centre of mass of link 2. 

A quasi-static case was further considered, in which the mo-

tions of the links described by the variables 𝛼1 and 𝛼2 were 
considered relative to the position of the links described by the 

coordinates 𝛽1 and 𝛽2. The coordinates 𝛽1 and 𝛽2 are treated as 
constants because their changes during movement are many 
times slower than those of 𝛼1 and 𝛼2. Therefore, based on these 
assumptions and Eq. (1), the angular velocities of the links are 
expressed as follows: 

{
𝑞̇1 = 𝛽̇1 + 𝛼̇1 = 𝛼̇1

𝑞2 = 𝛽̇2 + 𝛼̇2 = 𝛼̇2

          (19) 

where it is assumed that 𝛽1and 𝛽2 are constants. This assump-
tion leads to the analysis of the vibration of the manipulator at the 
positions defined by the angles 𝛽1 and 𝛽2. 

The coordinates of the centre of mass of link 2 are defined by 
the following formula: 

{
𝑥𝑆2 = 𝑙1 cos(𝑞1) + 𝑙𝑐2 cos(𝑞1 + 𝑞2)

𝑦𝑆2 = 𝑙1 sin(𝑞1) + 𝑙𝑐2 sin(𝑞1 + 𝑞2)
        (20) 

which, after taking into account Eq. (1), is written in the following 
form: 

{
𝑥𝑆2 = 𝑙1 𝑐𝑜𝑠(𝛽1 + 𝛼1) + 𝑙𝑐2 𝑐𝑜𝑠(𝛽1 + 𝛽2 + 𝛼1 + 𝛼2)

𝑦𝑆2 = 𝑙1 𝑠𝑖𝑛(𝛽1 + 𝛼1) + 𝑙𝑐2 𝑠𝑖𝑛(𝛽1 + 𝛽2 + 𝛼1 + 𝛼2)
   (21) 

After differentiating these equations with respect to time, the 
components of the velocity of the centre of mass of link 2 can be 
obtained: 

{
𝑥̇𝑆2 = −𝑙1𝛼̇1 𝑠𝑖𝑛(𝛽1 + 𝛼1) − 𝑙𝑐2(𝛼̇1 + 𝛼̇2) 𝑠𝑖𝑛(𝛽1 + 𝛽2 + 𝛼1 + 𝛼2)

𝑦̇𝑆2 = 𝑙1𝛼̇1 𝑐𝑜𝑠(𝛽1 + 𝛼1) + 𝑙𝑐2(𝛼̇1 + 𝛼̇2) 𝑐𝑜𝑠(𝛽1 + 𝛽2 + 𝛼1 + 𝛼2)

            (22) 

while the square of the velocity value of point S2 is as follows: 

𝑣𝑆2
2 = 𝑥̇𝑆2

2 + 𝑦̇𝑆2
2 = 𝑙1

2𝛼̇1
2 + 𝑙𝑐2

2 (𝛼̇1 + 𝛼̇2)2 + 2𝑙1𝑙𝑐2𝛼̇1(𝛼̇1 +
𝛼̇2) 𝑐𝑜𝑠(𝛽2 + 𝛼2)          (23) 

Taking into account the kinematic relations, the kinetic energy 
can be written in the following form: 

𝐸 =
1

2
[𝐼𝐴

(1)
+ 𝐼𝑆2

(2)
+ 𝑚2𝑙1

2 + 𝑚2𝑙𝑐2
2 + 𝑚2𝑙1𝑙𝑐2 𝑐𝑜𝑠(𝛽2 +

𝛼2)]𝛼̇1
2 + [𝑚2𝑙𝑐2

2 + 𝑚2𝑙1𝑙𝑐2 𝑐𝑜𝑠(𝛽2 + 𝛼2) + 𝐼𝑆2
(2)

]𝛼̇1𝛼̇2 +
1

2
(𝑚2𝑙𝑐2

2 + 𝐼𝑆2
(2)

)𝛼̇2
2          (24) 

The Lagrange function is introduced as follows: 

𝐿 = 𝐸 − 𝑉 =
1

2
[𝐼𝐴

(1)
+ 𝐼𝑆2

(2)
+ 𝑚2𝑙1

2 + 𝑚2𝑙𝑐2
2 +

𝑚2𝑙1𝑙𝑐2 𝑐𝑜𝑠(𝛽2 + 𝛼2)]𝛼̇1
2 +

1

2
(𝑚2𝑙𝑐2

2 + 𝐼𝑆2
(2)

)𝛼̇2
2 +

[𝐼𝑆2
(2)

+ 𝑚2𝑙𝑐2
2 + 𝑚2𝑙1𝑙𝑐2 𝑐𝑜𝑠(𝛽2 + 𝛼2)]𝛼̇1𝛼̇2 −

1

2
𝑘1𝛼1

2 −
1

2
𝑘2𝛼2

2 − 𝑚1𝑔𝑙𝑐1 𝑠𝑖𝑛 𝛽1 − 𝑚2𝑔𝑙1 𝑠𝑖𝑛 𝛽1 −

𝑚2𝑔𝑙𝑐2 𝑠𝑖𝑛(𝛽1 + 𝛽2)               (25) 

and then the Lagrange equations are formulated: 

{

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝛼̇1
) −

𝜕𝐿

𝜕𝛼1
= 0

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝛼̇2
) −

𝜕𝐿

𝜕𝛼2
= 0

          (26) 

which describe the free vibration of the robot arm. Their detailed 
form is as follows:  

[𝐼𝐴
(1)

+ 𝐼𝑆2
(2)

+ 𝑚2𝑙1
2 + 𝑚2𝑙𝑐2

2 + 2𝑚2𝑙1𝑙𝑐2 𝑐𝑜𝑠(𝛽2 +

𝛼2)]𝛼̈1 + [𝐼𝑆2
(2)

+ 𝑚2𝑙𝑐2
2 + 𝑚2𝑙1𝑙𝑐2 𝑐𝑜𝑠(𝛽2 + 𝛼2)]𝛼̈2 −
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2𝑚2𝑙1𝑙𝑐2 𝑠𝑖𝑛(𝛽2 + 𝛼2)𝛼̇2 𝛼̇1 − 𝑚2𝑙1𝑙𝑐2 𝑠𝑖𝑛(𝛽2 + 𝛼2) 𝛼̇2
2 +

𝑘1𝛼1 = 0  

(𝐼𝑆2
(2)

+ 𝑚2𝑙𝑐2
2 )𝛼̈2 + [𝐼𝑆2

(2)
+ 𝑚2𝑙𝑐2

2 + 𝑚2𝑙1𝑙𝑐2 𝑐𝑜𝑠(𝛽2 +

𝛼2)]𝛼̈1 + 𝑚2𝑙1𝑙𝑐2 𝑠𝑖𝑛(𝛽2 + 𝛼2) 𝛼̇1
2 + 𝑘2𝛼2 = 0               (27) 

By grouping the individual expressions into matrices, the 
equation of motion was obtained in the general form given by the 
following equation: 

𝑴𝜶̈ + 𝑪𝜶̇ + 𝑲𝜶 = 𝟎          (28) 

in which matrices have the following form: 

𝜶 = [
𝜶𝟏

𝜶𝟐
]           (29) 

𝑴 = [
𝑎1 + 2𝑎2 𝑐𝑜𝑠(𝛽2 + 𝛼2) 𝑎3 + 𝑎2 𝑐𝑜𝑠(𝛽2 + 𝛼2)

𝑎3 + 𝑎2 𝑐𝑜𝑠(𝛽2 + 𝛼2) 𝑎3
]          (30) 

𝑪 = [
−𝑎2 𝑠𝑖𝑛(𝛽2 + 𝛼2)𝛼̇2 −𝑎2 𝑠𝑖𝑛(𝛽2 + 𝛼2) (𝛼̇1 + 𝛼̇2)

𝑎2 𝑠𝑖𝑛(𝛽2 + 𝛼2) 𝛼̇1 0
]     (31) 

𝑲 = [
𝑘1 0
0 𝑘2

]           (32) 

while parameters 𝑎𝑖 result from the following grouping of coeffi-
cients: 

{

𝑎1 = 𝐼𝐴
(1)

+ 𝐼𝑆2
(2)

+ 𝑚2𝑙1
2 + 𝑚2𝑙𝑐2

2

𝑎2 = 𝑚2𝑙1𝑙𝑐2

𝑎3 = 𝐼𝑆2
(2)

+ 𝑚2𝑙𝑐2
2

         (33) 

The trigonometric functions occurring in the model can be de-
composed as follows: 

𝑐𝑜𝑠(𝛽2 + 𝛼2) = 𝑐𝑜𝑠 𝛽2 𝑐𝑜𝑠 𝛼2 − 𝑠𝑖𝑛 𝛽2 𝑠𝑖𝑛 𝛼2       (34) 

𝑠𝑖𝑛(𝛽2 + 𝛼2) = 𝑠𝑖𝑛 𝛽2 𝑐𝑜𝑠 𝛼2 + 𝑐𝑜𝑠 𝛽2 𝑠𝑖𝑛 𝛼2       (35) 

For the purpose of research involving vibration analysis in se-
lected robot configurations defined by angular coordinates β1 and 

β2, it can be assumed that the values of sin β2 and cos β2 are 
constant in each analysed configuration. Thus, the designations 
b1 = sin β2, b2 = cos β2 were introduced. From the fact that 

the angular coordinates α1 and α2 describing the oscillations are 
small angles, it follows that the following approximations can be 
used: sin α2 = α2, cos α2 = 1. Then the expressions described 
by Eqs. (34) and (35) can be written in the linearised form: 

𝑐𝑜𝑠(𝛽2 + 𝛼2) = 𝑏2 − 𝑏1𝛼2         (36) 

𝑠𝑖𝑛(𝛽2 + 𝛼2) = 𝑏1 + 𝑏2𝛼2         (37) 

Introducing these designations into the dynamic equations of 

motion, the M and C matrices are written as follows: 

𝑴 = [
𝑎1 + 2𝑎2𝑏2 − 2𝑎2𝑏1𝛼2 𝑎3 + 𝑎2𝑏2 − 𝑎2𝑏1𝛼2

𝑎3 + 𝑎2𝑏2 − 𝑎2𝑏1𝛼2 𝑎3
]    (38) 

𝑪 =

[
−(𝑎2𝑏1 + 𝑎2𝑏2𝛼2)𝛼̇2 −(𝑎2𝑏1 + 𝑎2𝑏2𝛼2)(𝛼̇1 + 𝛼̇2)

(𝑎2𝑏1 + 𝑎2𝑏2𝛼2)𝛼̇1 0
] (39) 

An important fact is that the angular coordinate β1 does not 
appear in the obtained equations of motion, from which it follows 
that the angular position of link 1 does not affect the vibrations of 
the robot arm. However, they depend on the angular coordinate 
β2. 

 

Since the authors had a second manipulator, identical to the 
one studied in this article, and used it for detailed analyses of its 
structure, the masses and mass moments of inertia were deter-
mined experimentally. The lengths of the links were obtained from 

geometric measurements. The joint stiffness coefficients k1 and 

k2 were determined experimentally. The manipulator arm was 
loaded with known, successively increasing loads (from the 
weights suspended at the end of the arm), and the displacements 
of each manipulator joint were measured using a Leica AT 960 
Laser Tracker (Fig. 2). This was used to determine the character-
istics of the moments as a function of the angular displacements 
of the links. The characteristics were approximated by linear 
functions, which allowed the assumption of constant values for the 
stiffness coefficients given in Tab. 1. 

  
Fig. 2. Measurement of displacements of links under the loads 

Tab. 1. Coefficient values used in robot model 

Coefficient Unit Value 

𝐼𝐴
(1)

 kgm2 0.55 

𝐼𝑆2
(2)

 kgm2 0.0009 

𝑚2 kg 50.58 

𝑙1 m 0.63 

𝑙𝑐2 m 0.1 

𝑘1 Nm/rad 555,000 

𝑘2 Nm/rad 138.000 

𝛽1 rad 2π/3 

3. ANALYTICAL SOLUTION 

To analytically determine the resonant frequencies of the ro-
bot, simplifications were introduced into the equations of motion 
(28) to obtain linear equations. Firstly, the terms of the equations 
containing the angular velocities α̇i were omitted to eliminate the 
quadratic forms of the velocities. This is equivalent to omitting the 

C matrix. Furthermore, the influence of the angles αi on the matrix 
M was omitted, justified by the relatively small influence of the 

angles αi on the phenomena related to the inertia of the links 
compared to the influence of these angles on the phenomena 
related to the elasticity expressed by the Kα term. The equation of 
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motion was thus obtained in the following form: 

𝑴0𝜶̈ + 𝑲𝜶 = 𝟎           (40) 

where 𝑴0 = 𝑴(𝜶 = 𝟎, 𝜷) was adopted. The matrix 𝑴0 is 
constant in a given configuration defined by the coordinate vector 

𝜷. The solution to the equation of motion (40) has the following 
form: 

𝛼𝑖 = 𝐴𝑖𝑐𝑜𝑠(𝜔𝑡 + 𝜑)          (41) 

Substituting this solution and its second derivative into the 
equation of motion (40) gives the following algebraic equation: 

(−𝜔0
2𝑴0 + 𝑲)𝑨 = 𝟎          (42) 

where 𝑨 is the displacement amplitude vector of the form 

𝑨 = [𝐴1 … 𝐴𝑛]𝑇. Eq. (42) is satisfied if 

𝑑𝑒𝑡(−𝜔0
2𝑴0 + 𝑲) = 0          (43) 

This is the equation for the natural frequencies of the system, 
which, in the case of the considered manipulator, has the follow-
ing form: 

(𝑎1𝑎3 − 𝑎3
2 − 𝑎2

2 cos2 𝛽2)𝜔0
4 − (𝑎1𝑘2 + 2𝑎2𝑘2 cos 𝛽2 +

𝑎3𝑘1)𝜔0
2 + 𝑘1𝑘2 = 0          (44) 

The positive solutions of Eq. (44) are follows: 

𝜔0 {1,2} = √
𝑑1

2𝑑2
∓ √

𝑑1
2

4𝑑2
2 −

𝑘1𝑘2

𝑑2
         (45) 

where 𝑑1 = 𝑎1𝑘2 + 2𝑎2𝑘2 cos 𝛽2 + 𝑎3𝑘1 and 𝑑2 = 𝑎1𝑎3 −
𝑎3

2 − 𝑎2
2 cos2 𝛽2 were adopted. Taking into account the values of 

the parameters 𝑎1, 𝑎2 and 𝑎3 and the elasticity coefficients 𝑘1 

and 𝑘2 (Tab. 1), the values of the natural frequencies 𝑓1 =
𝜔0 1 (2𝜋)⁄  and 𝑓2 = 𝜔0 2 (2𝜋)⁄  have been calculated as a 

function of the configuration determined by the 𝛽2 coordinate for 

𝛽2 ∈ 〈−2,269 ÷ 2,619〉 rad. The results of the calculations are 
shown in Fig. 3. 

  
Fig. 3. Robot natural frequencies as a function of theβ2 angle,  

obtained from the analytical solution 

Fig. 3 shows that the natural frequencies of the robot arm de-
pend significantly on its positioning. As the absolute value of the 

angle β2 increases, the value of the first natural frequency in-
creases, while the value of the second natural frequency decreas-
es. Changes in the frequencies of the natural vibrations in differ-

ent positions of the robot result from changes in the inertia of the 

system since the M and C matrices depend on the position of link 
2 with respect to link 1. The stiffness matrix, on the other hand, is 
constant regardless of the configuration. The first frequency in-
creases and the second frequency decreases as the absolute 

value of the angle β2 increases because the term 
d1

2

4d2
2 −

k1k2

d2
 in 

Eq. (45) decreases as the angle β2 increases. 

 
Fig. 4. Vibration mode shapes 

The mode shapes of the robot arm vibrations are shown in 
Fig. 4. The first mode of vibration consists of the links rotating in 
the same direction, whereas the second mode consists of the 
links rotating in opposite directions. 

4. NUMERICAL ANALYSIS 

Due to the complexity of the equations of motion, it is not pos-
sible to obtain analytical forms of solutions without simplification. 
Therefore, the study of properties of Equ. (28) was carried out 
using numerical methods. Eq. (28) was transformed to the follow-
ing form: 

𝜶̈ = −𝑴−1[𝑪𝜶̇ + 𝑲𝜶]          (46) 

Eq. (46) was solved numerically, assuming non-zero initial 
conditions causing vibrations with resonant frequencies. Then, the 
frequency spectrum of the vibrations of the robot’s links, that is, 
the solutions of Eq. (46), was determined. Tests were carried out 
in many configurations obtaining a map of resonant frequencies 
depending on the robot’s configuration. In the simulation studies 
(Tab. 1), the data corresponding to a section of the ABB IRB 1600 
robot arm were adopted. The first link in the model corresponds to 
the second link of the IRB 1600 robot arm, and the second link in 
the model corresponds to the third link of the IRB 1600 robot. 

Fig. 5 shows resonant frequency maps showing the vibration 
spectra of the robot’s links as a function of the arm configuration 

defined by the angular coordinate 𝛽2. This coordinate describes 
the angular position of link 2 relative to link 1. The characteristics 
show two resonant frequencies as the model takes into account 
the two degrees of freedom of the manipulator associated with 
vibration movements. The characteristics further show that the 
resonant frequencies of the robotic arm’s vibration significantly 

depend on its positioning. As the absolute value of the angle 𝛽2 
increases, the value of the first resonant frequency increases, 
while the value of the second resonant frequency decreases, and 
significantly so. 
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 (a) 

 
(b) 

 
Fig. 5. Resonant frequency maps of the manipulator depending  

on the configuration: (a) vibration spectrum of link 1,  
(b) vibration spectrum of link 2 

4. EXPERIMENTAL STUDIES 

An ABB IRB 1600 robot (Fig. 6) was used in the experimental 
studies to verify the analytical modelling and simulation results.  
A PCB 086C03 soft-tipped impact hammer was used to excite the 
vibrations since the subject of the analysis was low-frequency 
vibrations of the manipulator related to flexibility in the joints. The 
point of application of the forcing was the robot’s flange. The Iris 
M system, which includes a high-resolution camera and a com-
puter with RDI Motion Amplification software, was used to record 
and analyse the robot’s vibrations. The functionality of the system 
allows image acquisition and further processing, including amplifi-
cation of the recorded motion and vibration analysis of selected 
regions (points) in the time and frequency domains. 

The motion amplification function allows observation of dis-
placements with amplitudes of several micrometres at multiple 
magnifications. On the other hand, vibration analysis of selected 
regions marked on the recorded image allows determining the 
motion parameters (displacement, velocity) at a given point and 
performing Fourier transformation of the motion parameters. In 
addition, the available filters allow separating each vibration fre-
quency present and filtering the image in such a way as to ob-
serve each form of vibration of the robot separately. This function-
ality is particularly useful in the context of robot vibration analysis 
as it makes it possible to determine the direction of vibration at a 
given frequency and the form of deformation of the robot arm. In 
addition, the advantage of this technique is the ability to select any 
number of points for analysis after image acquisition, even without 

prior use of markers. Disadvantages include the sensitivity of the 
method to lighting, as is the case with most vision techniques. 

 
Fig. 6. Schematic diagram of the test stand: 1 – IRB 1600 robot, 2 – IRC5 

controller, 3 – Impact hammer, 4 – camera, 5 – computer with RDI 
Motion Amplification software 

The duration of a single image acquisition was 5 s at 140 
frames per second and 1920 x 1200 resolution. Accordingly, the 
spectral analysis of vibrations was conducted in the frequency 
range of 0–70 Hz, and the frequency resolution of the spectral 
analysis was 0.2 Hz. 

Fig. 7 shows selected configurations of the robot. The tests 
were carried out in configurations falling within the range of angle 

β2 ∈  −2,269 ÷ 2,619 rad for β1 = 2π/3. 

 
Fig. 7. Tested robot configurations 

Based on the conducted tests, the characteristics of the excit-
ed vibration frequencies on the real object were obtained. The 
results of simulation and experimental studies are presented in 
Tab. 2. Fig. 8 presents a comparison of the results obtained from 
simulation studies (Fig. 5) and experimental studies. Since the 
vibration amplitudes of the links during the experiments and simu-
lations have different values, and they are not significant in the 
presented studies, the results are presented in a two-dimensional 
graph. The values of the resonant frequencies obtained from the 
simulation (corresponding to the graphs in Fig. 5) are marked with 
the symbols “•” and “*”, while the data from experimental studies 
are marked with the symbols “○” and “□”. 



DOI 10.2478/ama-2023-0060               acta mechanica et automatica, vol.17 no.4 (2023) 

521 

The graphs shown in Fig. 8 confirm that the obtained results 
of simulation studies were confirmed by experimental studies. The 
obtained characteristics of the resonant frequencies in the studied 
range differ slightly from each other. 

Tab. 2. Values of resonance frequencies obtained in simulation  
and experimental studies 

An additional advantage of using a vision system with image 
filtering software is that it can generate movies containing extract-
ed modes of resonance vibrations. There are two modes of reso-
nance vibrations in the tested system. Fig. 9 presents one video 
frame, which shows the robot arm in a selected position defined 

by the angles 𝛽1 = 2𝜋/3 i 𝛽2 = −5𝜋/9. In addition, displace-
ments of selected points are marked, which are proportional to the 

length of the arrows. Fig. 9a shows the total vibrations of the arm 
in a selected position, Fig. 9b shows the first mode of vibrations 
and Fig. 9c shows the second mode of vibrations. For better 
visibility, for the purposes of motion analysis, the displacements in 
Figs. 9b and 9c are shown on a larger scale than shown in Fig. 
9a. 

For the first and second modes of vibration, a plan of dis-
placements was made. The displacement vector of point A for the 

i-th mode of vibration is 𝑟̅𝐴𝑖 = 0. The displacement 𝑟̅𝐵𝑖  of point B 
is determined based on image analysis and is different from zero 
for each mode of vibration. From the displacement distribution of 

link 1, the angle 𝛼1𝑖 was determined, describing the angular 
vibrations of link 1 relative to point A. The displacement of point C 
in the i-th mode of vibration is equal to 𝑟̅𝐶𝑖 = 𝑟̅𝐵𝑖 + 𝑟̅𝐶𝐵𝑖 , where 

𝑟̅𝐶𝐵𝑖  is the relative displacement of point C relative to point B. The 
introduction of the relative displacement made it possible to de-
termine the angle of rotation 𝛼2𝑖, describing the angular vibrations 
of link 2 relative to point B. The performed analysis of the dis-
placement distribution shows that the first mode of vibration con-
sists in the rotation of the links in the same directions, while the 
second mode of vibration consists in the rotation of the links in 
opposite directions. 

 
Fig. 8. Frequencies of resonant vibration in simulation and experimental 

studies

 
   (a)          (b)           (c) 

       
Fig. 9. Robot arm vibrations: (a) total vibrations, (b) first vibration mode, (c) second vibration mode 

 Simulation Experiment 

𝜷𝟐 

[rad] 

Frequency 
f1 

[Hz] 

Frequency 
f2 

[Hz] 

Frequency 
f1 

[Hz] 

Frequency 
f2 

[Hz] 

2.618 26.58 41.14 25.31 39.30 

2.443 26.39 40.84 24.99 39.11 

2.269 26.39 40.21 24.51 37.78 

2.094 25.63 40.00 24.22 39.25 

1.920 25.07 40.12 23.53 38.94 

1.745 24.16 40.27 23.58 39.97 

1.571 23.33 41.60 23.195 39.40 

1.396 23.05 42.89 22.67 41.51 

1.222 22.73 43.45 22.40 45.46 

1.047 21.62 45.93 22.12 48.41 

0.873 20.72 47.66 21.47 48.90 

0.698 20.54 50.28 20.20 49.72 

0.523 20.36 52.36 20.97 49.74 

0.174 19.84 58.77 20.79 58.81 

0.174 20.23 60.67 19.26 60.02 

0.524 19.87 58.84 21.83 58.22 

0.873 20.40 52.44 20.11 52.15 

1.222 20.83 47.90 20.51 47.78 

1.571 22.10 44.22 22.14 44.06 

1.920 23.33 41.60 21.79 41.20 

2.269 25.07 40.12 - - 
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5. CONCLUSIONS 

The article presents the results of a study of the dependence 
of the resonant frequencies of a manipulator on its configuration, 
understood as the angular position of the links. The dynamic 
equations of motion were formulated, in which only the motion of 
the arms related to the flexibility in the joints, that is, the motion of 
a vibrational nature, was taken into account, and the other effects 
related to the slow-moving motion of the links were omitted. From 
the obtained results of simulation studies, it is clear that the mutu-
al positioning of the manipulator’s links significantly affects vibra-
tion effects, including the values of resonant vibration frequencies. 
The results of simulation studies based on the mathematical 
model were confirmed by experimental studies. In addition, it 
should be noted that the values of resonant frequencies deter-
mined in simulation and experimental studies differ by only a few 
percent, with a maximum of 6.43% for the first frequency of 7.66% 
for the second frequency and in the configuration β2 = 2.269 
[rad]. 

The next stages of the research will be related to the inclusion 
of the arm’s interaction with the environment in the mathematical 
model, taking into account damping and increasing the number of 
degrees of freedom of the manipulator model. 

The equations obtained in the proposed approach, although 
simpler than those found in the literature, are characterised by 
high complexity. Their analytical solution requires the use of sim-
plifications leading to linearisation or the use of an approximation 
by expanding the non-linearity into series, which will be one of the 
next stages of the work. 
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