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Abstract: This paper is focusses  on developing a novel method for vibration damage estimation for military helicopters, fighter aircrafts 
and any other aircraft exposed to combined stochastic and deterministic loading. The first stage of the research focused on frequency  
domain damage prediction, which is the legacy method proposed by Bishop and developed by Sweitzer, Schlesinger, Woodward, Kerr, 
Murthy, Datta and, Atkins. The mentioned frequency domain-based method is used in commercial software, e.g., MSC CAE Fatigue.  
Frequency domain damage prediction is based on superposition of spectral moments and Dirlik method of Rainflow Cycle Counting  
algorithm in frequency domain. The first phase of the research showed the legacy algorithm based on transfer function developed using 
FEM (Finite Element Method) method in Abaqus environment and  is very conservative. The second stage of the research aims to develop 
a novel method which allowing for more robust and accurate damage estimation. For this purpose, the Monte Carlo method for retrieving 
random signal in the time domain from signal in frequency domain was used. To obtain the system transfer function, – the 1 g load har-
monic system response was obtained using FEM analysis. It was subsequently scaled linearly by the PSD input curve for random loading 
and sine wave, or sine sweep function for deterministic loading to calculate the cumulative system response of the linear system.  
The research allows the development of a  novel method to precisely estimate vibration damage using combined time and frequency  
domains approach, based on effective frequency domain FEM   analysis of the linear system. The new proposed method can be also used 
for precise replication of test conditions via considering signal clipping and frequency resolution used for real testing.    

Key words: vibration damage, random vibration, FEM, Monte Carlo method, frequency,  time domain Rainflow Cycle Counting algorithms 

1. INTRODUCTION 

Rainflow Cycle Counting algorithm in frequency domain is 
commonly used for vibration damage estimation under stochastic 
loading of linear systems in synergy with FEM analysis. A precur-
sor of Rainflow Cycle Counting algorithm in frequency domain 
was the study of Bendat and Rice [1–4], whose authors provided 
a method for use in narrow band signals. The next milestone was 
the development of the Rainflow Cycle Counting algorithm in the 
frequency domain made by Dirlik, using Monte Carlo method 5. 
This approach is now considered one of the most accurate tech-
niques used in commercial software applications [6, 7] for as-
sessment of damage under random loading. Other researchers 
were Lalanne [8–10] and Steinberg 11, who provided their meth-
ods for Rainflow Cycle Counting in the frequency domain. All 
aforementioned methods have been tested by Halfpenny [12–14], 
albeit only for evaluation of damage under pure stochastic load-
ing. 

The aforementioned methods have been developed for vibra-
tion damage estimation for purely stochastic loading. However, 
these methods have been adopted for more general usage i.e. 
damage estimation under combined stochastic and deterministic 
loading in the studies of Bishop, Sweitzer, Schlesinger, Wood-
ward, Kerr, Murthy, Datta and Atkins in their publications [15–24]; 
and the loading scenario for using this method is e.g. simultane-

ous deterministic sine sweep and random load – as can be seen 
in Fig. 1. This combination is required by the US Department of 
Defence Test Method Standard 27 or other specific requirement 
specified by military aircraft manufacturers. 

The first stage of research introduced in this paper shows that 
using the abovementioned methods has resulted in highly con-
servative damage results. 

The second stage of research was the development of a novel 
method for precise damage estimation under combined loads, and 
this method introduces combined frequency and time domain 
calculation instead of using only frequency domain for vibration 
damage estimation in the legacy method. Superposition of the 
stochastic and deterministic loading approaches has been intro-
duced by NASA 28. The novel method presented in this paper 
assumes an extension of this approach for analysis of the PSD 
Response of the system, realising the stochastic and deterministic 
signals’ superposition and damage analysis by use of the Monte 
Carlo method. The novel method introduced in this paper is much 
more accurate, as well as offers an opportunity to replicate test 
parameters e.g., clipping the stochastic signal at a considered 
sigma level. Additionally, this method allows consideration of the 
large population of time series to assess the damage distribution 
for a considered PSD input curve. 

In this paper, for combined loads, a simultaneous determinis-
tic linear sine sweep was used (which represents, e.g. shooting 
with the variable firing gun installed on an aircraft or helicopter), 
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and stochastic loads were defined with the use of a PSD input 
curve (Fig. 1), which represents normal operating dynamic load-
ing, e.g. turbulences. 

The novel technique introduced in this paper expands re-
search carried out by Dirlik in consideration of frequency resolu-
tion, populational studies [27, 28], combination stochastic and 
deterministic loading, and additionally uses FEM for transfer 
function estimation. 

 
Fig. 1. Sine waves sweep simultaneous with random background 

2. FREQUENCY DOMAIN VIBRATION DAMAGE ESTIMATION  

Vibration damage assessment, based on transfer function of 
system, was derived using the mode superposition method in 
Abaqus environment. The PSD Response functions were founded 
based on a complex stress tensor (that assumed real and imagi-
nary values), and are used for the evaluation of Huber–Mises–
Hencky (σHMH) stress based on Eq. 1: 

 𝜎𝐻𝑀𝐻   
1

2
[(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 +

(𝜎11 − 𝜎33)2 + 6(𝜎23
2 + 𝜎31

2 + 𝜎12
2 )]  

   (1) 

where each stress tensor component is evaluated as shown  
in Eq. 2: 

 𝜎𝑖𝑗   𝑅𝑒(𝜎𝑖𝑗) + 𝐼𝑚(𝜎𝑖𝑗) (2) 

where Re(σij) is the real part of stress tensors, and Im(σij) the 

imaginary part. 
The equivalent stress has been used for demonstration of the 

algorithm; additionally, this approach is widely used in related 
publications [12–14, 30, 31], and commercial software applica-
tions such as nCode 7 and MSC CAE Fatigue 6, for isotropic 
material. Future research will focus also on developing algorithms 
by means of using the Critical Plane approach, which is treated as 
a more robust approach [6, 7, 30. 31]; however, such an approach 
would be much more computationally expensive. 

It needs to be noted that the original development of this 
method in the present study is intended for application concerning 
isotropic, metallic material; any other consideration with reference 
to usage of this method for orthotropic material will be a subject of 
future research. 

Additionally, the aforementioned further research will focus al-
so on the possibility for using the proposed method in such a way 
that synergy with the energetic fracture mechanics model is 
achieved, as can be observed in relevant studies comprised in the 
literature [32–34], where the Cohesive Zone Model has been used 

for assessing damage and life prediction. 
The derived transfer function H(f) was then multiplied by the 

PSD input G(f) defined for the considered test duty, and resultant-
ly the PSD Response function in frequency (see Fig. 2) domain 
was obtained, as indicated in Eq.      (3). 

𝑆(𝑓)  𝐻(𝑓) ∙ 𝐺(𝑓)      (3) 

 
Fig. 2. Evaluation of the PSD Response workflow based on PSD  

input load and Transfer Function of the considered unit 

The PSD Response function has been derived for each inte-
gration point of the discrete model. Spectral analysis was the next 
step to be based on the PSD Response of the considered unit, 
and it involved numerical integration of the 0th, 1st, 2nd and 4th 
spectral moments (𝑚𝑛) in the frequency domain, based  
on Eq.    (4): 

𝑚𝑛  ∫ 𝑓𝑛 ∙ 𝑆(𝑓)𝑑𝑓
∞

0
     (4) 

where mn represents the n spectral moment, f the considered 
frequency and S(f) the PSD Response function. 

Spectral moments are used for derivation of signal statistic pa-
rameters in frequency domain: 

Upward zero crossing (E[0]) – Eq.   (5): 

𝐸[0]  √
𝑚2

𝑚0
  

  (5) 

where 𝑚2 stands for the second spectral moment and 𝑚0  
the zero spectral moment. 

Number of peaks (E[P]) (local maximum of signal function) – 
Eq. (6): 
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𝐸[𝑃]  √
𝑚4

𝑚2
  

(6) 

where 𝑚4stands for the fourth spectral moment. 
Irregular factor (γ) – Eq.       (7): 

𝛾  
𝑚2

√𝑚0∙𝑚4
        (7) 

Signal statistic parameters in frequency domain constitute the 
basis for the Dirlik method of executing the Rainflow Cycle Count-
ing algorithm in frequency domain, as can be ascertained from the 
studies of Dirlik 5 and Bishop et al. 19. 

The Probability Density Function (PDF) of Dirlik method 
(PDFD) can be written in the form indicated by Eq.    (8): 

𝑃𝐷𝐹𝐷  (
𝐷1

𝑄
𝑒

𝑍

𝑄 +  
𝐷2𝑍

𝑅2 𝑒
−𝑍2

2𝑅2 + 𝐷3𝑍𝑒
−𝑍2

2 ) ∙
𝑑𝑆

2𝑅𝑀𝑆
     (8) 

where the normalised Dirlik stress variable is represented by Z 
(Note: The value of the Dirlik normalised stress variable is twice 
that of the Bendat normalised stress variable.); as indicated in Eq.   
(9), 

𝑍  
𝑆

2√𝑚0
    (9) 

where S is the stress at the considered histogram bin. 
The “mean frequency” (Xm) would be as presented  

in Eq. (10): 

𝑋𝑚  
𝑚1

𝑚0
∙ √

𝑚2

𝑚4
  (10) 

Expressions of the remaining Dirlik empirical variables 
(D1, D2, D3, Q and R) are presented in Equations (11)–(15): 

𝐷1  
2(𝑋𝑚 − 𝛾2)

1 + 𝛾2
 

(11) 

𝐷2  
1 − 𝛾 − 𝐷1 + 𝐷1

2

1 + 𝛾2
 

(12) 

 𝐷3  1 − 𝐷1 − 𝐷2 (13) 

𝑄  
1.25 ∙ (𝛾 − 𝐷2 ∙ 𝑅 − 𝐷3)

𝐷1

 
(14) 

𝑅  
𝛾 − 𝑋𝑚 − 𝐷1

2

1 − 𝛾 − 𝐷1 + 𝐷1
2 

(15) 

The final equation for estimation of the actual number of cy-
cles with the use of the Dirlik method (nDirlik) can be presented 
as indicated in Eq. (16): 

𝑛𝐷𝑖𝑟𝑙𝑖𝑘   𝑃𝐷𝐹𝐷(𝑆) ∙ 𝑇 ∙ 𝐸[𝑃] (16) 

where T is the time of exposure on random loading. 
Total damage was evaluated using the Palmgren-Miner rule 

37 and the failure criterion equivalent to damage value exceeds 1, 
as indicated in Eq. (17): 

Total Damage  ∑
𝑛𝑖_𝐷𝑖𝑟𝑙𝑖𝑘

𝑁(𝑆𝑖)

∞

0

 (17) 

where 𝑛𝑖_𝐷𝑖𝑟𝑙𝑖𝑘  is the actual number of cycles for the considered 

stress at bins, and 𝑁(𝑆𝑖) the allowable number of cycles for the 
considered stress at bins, based on S-N curve (fatigue curve – 
stress versus available cycles). 

As part of the present research, the authors created a tool for 
damage estimation using an exemplary unit for benchmarking 
against commercial software. Fatigue damage estimation is based 
on FEM analysis 39 unit loading with the use of a linear dynamic 
method in an Abaqus software application 40. This research used 
the example of a cantilever beam with a cut U notch. The geome-
try, discrete model and graphical support representation are pre-
sented in Fig. 3. The harmonic load input is a unit load (1 g) ac-
celeration applied to the base (supported region). 

 
Fig. 3. Geometry, discrete model and graphical support representation  

of a sample taken for the research results’ visualisation 

For this paper, it is assumed that the sample is made of steel 
17-4PH (H1025), and accordingly, fatigue material properties from 
MMPDS-15 31 were used; thus, for the considered steel sample, 

a value of Kt  3 was used as the reference. 

Tab. 1. Steel 17-4PH (H1025) material properties  
used for demonstrational analysis 

Steel 17-4PH (H1025) 

Young modulus E [MPa] Poisson ratio ν [] 
Density ρ 
[t/mm3] 

195,000 0.27 7.89E–09 

 
To enable an effective consideration of the aforementioned 

factors, the authors of the present study assumed a constant 
critical damping ratio for the entirety of the frequency bandwidth 
(0–1,000 Hz) and equal to 2.5%. (Note that the created method 
and software need input, which would need to consist of a model 
correlated against test results; however, for benchmarking, we 
assumed artificial parameters of damping.) 

 
Fig. 4. Frequency domain vibration damage estimation  

using Dirlik method 

 
Fig. 5. Visualisation of Dirlik Damage obtained in MSC CAE Fatigue 

commercial software environment 
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Damage results can then be presented on a discrete model 
using Abaqus 40 visualisation module and the authors’ scripts, as 
demonstrated in Fig. 4. 

For the considered method, benchmarking has been made 
against the MSC CAE Fatigue software. An exemplary result for 
duty matched to the above example is presented in Fig. 5. 

The obtained damage values have been benchmarked 
against commercial software and the differences in results do not 
exceed 1%. This result is the basis for the first stage of the re-
search – damage estimation for combined stochastic and deter-
ministic loading in frequency domain. 

3. FREQUENCY DOMAIN VIBRATION FATIGUE ESTIMATION 
UNDER COMBINED STOCHASTIC AND DETERMINISTIC 
LOADING – THE LEGACY METHOD 

The methodology introduced in Section 2 of this paper is the 
basis for damage estimation under only stochastic loading. Re-
search carried out by Bishop, Sweitzer, Schlesinger, Woodward, 
Kerr, Murthy, Datta and Atkins in their publications [15–24] de-
scribe the idea for damage estimation based on superimposition 
of spectral moments generated by random and deterministic 
loads. The abovementioned approach was used in these studies. 

The transfer function (Hi(f)), which consists of e.g. Huber–
Mises–Hencky complex stress or critical plane stress, needs to be 
evaluated for finite i numbers of frequency sub-ranges, e.g. for a 
sweep between 100 Hz and 150 Hz, there is a need for the evalu-
ation to be conducted in consideration of a sub-ranges’ size of 
e.g. 0.1 Hz. For each sub-range, a single sine wave is considered, 
and signal statistic needs to be introduced. 

The response function S(f) is then evaluated based on the 
transfer function H(f), and the sine sweep amplitude (G(f)), as 
indicated in Eq. (18). 

𝑆𝑖(𝑓𝑖)  √𝐻𝑖(𝑓𝑖) ∙ 𝐺𝑖(𝑓𝑖)  (18) 

The root mean square (RMS) of a single sine wave can then 
be evaluated, as indicated in Eq. (19). 

RMS  
√2

2
∙ 𝑆𝑖(𝑓𝑖)  

(19) 

The next step is evaluation of spectral moments for every 
considered single sine wave function using the following equa-
tions for the 0th, 1st, 2nd and 4th spectral moments [Equations 
(20)–(23)]: 

𝑚0_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒(𝑓𝑖)  𝑅𝑀𝑆2 (20) 

𝑚1_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒(𝑓𝑖)  𝑚0(𝑓𝑖) ∙ 𝑓𝑖 (21) 

𝑚2_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒(𝑓𝑖)  𝑚0(𝑓𝑖) ∙ 𝑓𝑖
2

 (22) 

𝑚4_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒(𝑓𝑖)  𝑚0(𝑓𝑖) ∙ 𝑓𝑖
4

 (23) 

where fi represents the considered frequency. 
Signal statistic in frequency domain was based on spectral 

analysis made iteratively for the considered frequency sub-ranges 
e.g., 0.1 Hz sub-ranges’ width. Spectral moments from determinis-

tic loading (𝑚0_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒, 𝑚1_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒, 𝑚2_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒 , 

𝑚4_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒) need to be summed with spectral moments from 

stochastic background (𝑚0, 𝑚1, 𝑚2, 𝑚4) as introduced in Equa-

tions (24)–(27). 

𝑚0_𝑚𝑖𝑥𝑒𝑑_𝑚𝑜𝑑𝑒(𝑓𝑖)  𝑚0+ 𝑚0_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒(𝑓𝑖) (24) 

𝑚1_𝑚𝑖𝑥𝑒𝑑_𝑚𝑜𝑑𝑒(𝑓𝑖)  𝑚1+ 𝑚1_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒(𝑓𝑖) (25) 

𝑚2_𝑚𝑖𝑥𝑒𝑑_𝑚𝑜𝑑𝑒(𝑓𝑖)  𝑚2+ 𝑚2_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒(𝑓𝑖) (26) 

𝑚4_𝑚𝑖𝑥𝑒𝑑_𝑚𝑜𝑑𝑒(𝑓𝑖)  𝑚4+ 𝑚4_𝑠𝑖𝑛𝑒_𝑤𝑎𝑣𝑒(𝑓𝑖) (27) 

where 𝑚0_𝑚𝑖𝑥𝑒𝑑_𝑚𝑜𝑑𝑒(𝑓𝑖), 𝑚1_𝑚𝑖𝑥𝑒𝑑_𝑚𝑜𝑑𝑒(𝑓𝑖), 

𝑚2_𝑚𝑖𝑥𝑒𝑑_𝑚𝑜𝑑𝑒(𝑓𝑖) and 𝑚4_𝑚𝑖𝑥𝑒𝑑_𝑚𝑜𝑑𝑒(𝑓𝑖) are, respectively, 

the spectral 0th, 1st, 2nd and 4th moments for superimposed 
signal at the considered frequency. 

It is also required to be noted that during superposition, the 
spectral moment sum used the full moment from the stochastic 

part of duty (m0, m1, m2, m4), as the allowable number of cy-

cles is also calculated iteratively for the considered Ti, which is 
equal to total time (TTotal) divided by the number of sub-ranges; 
as indicated in Eq. (28), 

𝑇𝑖   
𝑇Total

𝑛
  (28) 

where n is the number of sub-ranges. 
So far as Rainflow Cycle Counting in frequency domain was 

concerned, the same was evaluated with the use of Dirlik or Nar-
row Band method, or alternatively damage evaluation was provid-
ed for each of the sub-ranges in the same way as introduced in 
Section 2 of this paper, that is to say by expressing the number of 
actual cycles according to the Dirlik Rainflow Cycle Counting in 
frequency domain (ni); as indicated in Eq. (29), 

𝑛𝑖   𝑃𝐷𝐹𝑖(𝑆) ∙ 𝑇𝑖 ∙ 𝐸𝑖[𝑃]  (29) 

where PDFi(S) is the PDF at the considered stress bin, and 
Ei[P] the number of peaks at the considered stress bin. 

The damage value for the considered sub-range (Di) is as 
expressed in Eq. (30): 

𝐷𝑖   
𝑛𝑖

𝑁(𝑆)𝑖
  (30) 

where N(S)i is the allowable number of cycles at the considered 
stress bin based on the considered S-N curve. 

The total damage (DTotal) under combined stochastic and 
deterministic loading is the sum of damage from each of the sub-
ranges, as indicated in Eq. (31): 

𝐷𝑇𝑜𝑡𝑎𝑙   ∑ 𝐷𝑖
𝑛
𝑖  1   (31) 

The damage value obtained by the created algorithm has 
been benchmarked against the damage value obtained using 
commercial software, and resultant to this benchmarking, a great 
correlation was obtained (exemplary results have been introduced 
in Section 5 of this paper). 

4. COMBINED FREQUENCY AND TIME DOMAINS 
VIBRATION DAMAGE ESTIMATION UNDER COMBINED 
STOCHASTIC AND DETERMINISTIC LOADING  
– THE NOVEL METHOD 

The new original method developed in the present study as-
sumes the need for processing of the combined frequency and 
time domain consideration for superimposing the stochastic and 



Michał Ptak, Jerzy Czmochowski                          DOI 10.2478/ama-2023-0065 
Using Computer Technique for Developing Method for Vibration Damage Estimation under Combined Random and Deterministic Loading 

562 

deterministic responses of the considered system. The second 
stage of the study focussed on developing a novel method for 
precise vibration damage estimation under combined loading. The 
idea is based on retrieving time series signal from the frequency 
domain PSD Response as proposed by Dirlik 5 – with the use of 
the Monte Carlo method, which is discussed in an extended form 
in the study of Ptak and Czmochowski 29. The PSD Response 
function and its corresponding frequency constitute elements of 
the vector used in retrieval of the time domain signal by employing 
the inverse discrete Fourier transformation. The equation for time 

series signal (S(k∆t)) can be written as follows [Eq. (32)], 5: 

𝑆(𝑘∆𝑡)  ∑ 𝜃(𝑗 ∙ 𝑛2𝜋𝑓)
𝑁

2
−1

𝑛  
−𝑁

2

∙ 𝑒𝑗∙2𝜋𝑘𝑛/𝑁  (32) 

where f is the considered frequency and N the natural number. 
k can be written in the form of the following Eq. (33): 

𝑘  0,1,2,3, … , 𝑁 − 1  (33) 

The θ function can be written in the form of the following Eq. 
(34), 42: 

𝜃(𝑗 ∙ 𝑛2𝜋𝑓)  √𝑆(𝑛 ∙ 2𝜋∆𝑓)𝑒𝑗𝛷𝑛  (34) 

for n defined as in Eq. (35). 

 𝑛  0,1,2,3, … , 𝑁/2 − 1  (35) 

The Φn represents a random phase angle, defined as to be 
uniformly distributed in the bandwidth <–π; π>. To summarise, the 
time series is obtained using the Monte Carlo approach and in-
verse discrete Fourier transformation. 

The time series signal can be defined by the function S(k∆t) 
and needs to be a real function of time. This is so as for the intro-
duction of information about stress sign for Rainflow Cycle Count-
ing algorithm, which will be omitted if the complex value of this 
function is not equal to zero. It implies that the spectrum defined 
by the function θ in Eq. (34) has to exhibit a complex conjugate 
symmetry as per the following Eq. (36), 42: 

𝜃(𝑗 ∙ 𝑛2𝜋𝑓)  𝜃(−𝑗 ∙ 𝑛2𝜋𝑓)  (36) 

for n defined as in Eq. (35). 
A graphical representation of the conjugate symmetry can be 

found in the figure below (Fig. 6): 

 
Fig. 6. The complex conjugate symmetry of the PSD Response function 

An additional restriction for the θ function is that this function 
needs to cross zero (37): 

𝜃(0)  0  (37) 

Meeting this condition implies that the signal in the time do-
main S(k∆t) has a mean value equal to zero. 

An additional implication is that the imaginary portion of the 
signal will be equal to zero, and therefore the magnitude of the 
signal will be equal to the real portion of this signal; and this would 

moreover imply that the sign can be saved for further fatigue 
consideration. 

For verification of the obtained signal, we evaluated the RMS 
of the time series signal S(k∆t) using the standard deviation equa-
tion, which can be written as shown below in Eq. (38): 

RMStime series  √
1

𝑁
∑ 𝑆(𝑘∆𝑡)2𝑁−1

𝑘  0   (38) 

The time signal has a zero-mean value, and the standard de-
viation equal to RMS was estimated for a signal in the frequency 
domain. Therefore, retrieval of a signal defined in the frequency 
domain to one in the time domain has been carried out success-
fully, and this methodology will be used for retrieving the fatigue 
information by employing time series Rainflow Cycle Counting 
algorithm, which is implemented in the Python language (as doc-
umented 44). 

For evaluating the damage in the time domain, the authors of 
the Rainflow Cycle Counting algorithm have used a Python lan-
guage program 46, which allows the fatigue cycles to be counted 
and appropriate range values for time series signal (peak and 
trough extraction from time series signals) to be ascertained. 

Time series signals retrieved from the PSD Response signal 
with the use of the developed Python algorithms are indicated in 

Fig. 7 (frequency resolution based on N  216). Additionally, the 
Rainflow Cycle Counting histogram for this signal has been intro-
duced in Fig. 8. 

Note: In the present research, the stress life method has been 
introduced as an example. Further research will focus on using 
the strain life method, and would involve the use of e.g. Morrow or 
Smith–Watson–Topper mean stress correction and Neuber cor-
rection [48–50]. 

 
Fig. 7. Initial time series processing extracting peak and trough  

for Rainflow Counting algorithm, white noise signal, irregular  
factor 0.3, block size N  216 

 
Fig. 8. Rainflow Cycle Counting algorithm histogram, white noise signal, 

irregular factor 0.3, block size N  216 
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The specified linear sine sweep frequency (fspec(t)) depend-

ence from time can be written as a function of time and frequency, 
as indicated in Eq. (39): 

𝑓spec(𝑡)  f1 + K · T  (39) 

where T is the total sweep time, K the sweep rate and f1 the initial 
sweep frequency. 

Specified frequency (fspec(t)) can be written in an alternative 

form, as indicated in Eq. (40): 

𝑓𝑠𝑝𝑒𝑐(𝑡) 𝑓1 + (𝑓2 − 𝑓1)
𝑡

𝑇
  (40) 

where 𝑓2 is the end sweep frequency and t the time variable. 
Sine sweep frequency (f(t)) is the integral of specified fre-

quency and can be written as indicated in Eq. (41): 

𝑓(𝑡)  ∫ 𝑓spec(𝑡)𝑑𝑡  𝑓1 · 𝑡 +
𝑓2−𝑓1

𝑇
·

𝑡2

2
  (41) 

Input sine sweep (G(t)) with constant accelaration amplitude 
can be written as indicated in Eq. (42): 

𝐺(𝑡)  𝑢(𝑡) · sin(𝜔𝑡)   𝑢(𝑡) · sin(2𝜋𝑓(𝑡) · 𝑡)  (42) 

where 𝑢(𝑡) is the displacement in time and 𝜔 the circular fre-
quency. 

Additionally, the equivalent version for implementation in the 
Python programming language 44 can be written as indicated in 
Eq. (43): 

𝐺(𝑡)  𝑢(𝑡) · sin (2𝜋 · 𝑡 · (𝑓1 +
𝑓2−𝑓1

𝑇
·

𝑡

2
))  (43) 

As the sine sweep frequency is deterministic, that is to say 
since it depends on time, the same can thus be scaled by the 
transfer function H(f) to obtain a time series sweep including the 
system response, as indicated in Fig. 9. 

 
Fig. 9. Sine sweep system response in the time domain,  

sweep rate K  0.095367 Hz/s 

Sine sweep response (S(t)) can be written as indicated in 
Eq. (41): 

𝑆(𝑡)  √𝐻(𝑡) ∙ 𝐺(𝑡)  (44) 

where H(f) is the transfer function and G(t) the input sine sweep 
acceleration. 

This signal, which consists of the PSD Response stress val-
ues, can now be superimposed to the random time series PSD 
Response retrieved using the Monte Carlo method (assuming 
system linearity, with a restriction pertaining to the time sequence 
of the retrieved random signal needing to match with the time 
sequence of the sine sweep) – as can be seen from Fig. 10. 

For the superimposed signal corresponding to the Rainflow 
Cycle Counting algorithm in the time domain to be capable of 
being used, the S–N curve for the stress life method needs to be 
introduced, and it is only then that the damage for the combined 
stochastic–deterministic input can be evaluated. 

It also needs to be noticed that sweep rate can be fitted to 
background random loading to obtain one sweep during acting 
random loading if there is no specific requirement specified by the 
aircraft manufacturer. 

 
Fig. 10. Superimposition of stochastic and deterministic responses  

in the time domain 

 
Fig. 11. Sine sweep system response in the time domain,  

sweep rate K·2  0.190735 Hz/s 

 
Fig. 12. Sine sweep system response in the time domain,  

sweep rate K·4  0.38147 Hz/s 

It has been ascertained that n number of sine sweeps with n 

times higher than the reference sweep rate (Fig. 11 for n  2 and 

Fig. 12 for n  4) cause the same theoretical damage as one 
sweep with the reference sweep rate. For benchmark signals 
have been merged in a theoretical way, there is no continuous link 
between sweeps; however, the impact on the quoted damage is 
negligible as the maximum stress cycles for the considered sam-
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ples are much higher than those in the link region. It needs to be 
noticed that only one sweep acting during random loading dura-
tion should give the highest damage as increasing the sweep rate 
can cause a situation wherein the system will not respond with full 
amplitude during the resonance and the maximum resonance 
amplitude will decrease. 

A proposed algorithm flow chart for damage estimation under 
combined stochastic and deterministic loading in the time domain 
is presented in Fig. 13. 

 
Fig. 13. Algorithm flow chart for damage estimation under combined 

stochastic and deterministic loading in the time domain 

5. COMPARISON RESULTS OBTAINED FOR LEGACY 
METHOD AND PROPOSED METHOD 

The abovementioned legacy method for combined stochastic–
deterministic loading proved to be highly conservative. Two loops 
of analysis under vibration loading were calculated. The 1st loop, 
based on algorithms for vibration damage estimation under de-
terministic loading (pure sine sweep), obtained a damage value of 
0.009 for the critical integration point. The 2nd loop was based on 
algorithms for combined stochastic–deterministic loading and a 
low-level non-damaging random load (giving rise to a damage of 0 
after evaluation using the algorithm for pure random loading and 
peaking at 9 MPa in the case of a stress of 5 σ). For the combined 
load scenario, a damage of 0.58 was calculated for the same sine 
sweep as in the 1st loop (resulting in a damage of 0.009). The 
results above have shown that the legacy approach is character-
ised by a high conservatism and have initialised the subsequent 
phase of our research. A summary of the obtained result is pro-
vided in Tab. 2. 

Note: Even when assuming that maximum stress from reso-
nance for sine sweep (258 MPa) occurs for every cycle in sweep 
(conservatively assuming that the maximum peak in a resonance 
occurs through 50 Hz) and superimposing a 5 σ stress amplitude 
equal to 9 MPa, the damage obtained is equal to 0.21. 

The research results show that the legacy method is highly 

conservative, and therefore the need arises for developing a new 
method for this loading scenario, to remove the conservativism 
during damage estimation. This is important from the point of view 
of requirements associated with aerospace, especially for military 
application, where e.g., the mass of the components can be re-
duced. 

Tab. 2. Comparison damage evaluated with spectral method  
in the frequency domain (legacy method) and new proposed 
method (damage evaluated in the time domain) 

Test No. 1 2 

Damage proposed method 0.00875 0.06718 

Damage legacy method authors 
algorithm for combined loading 

0.58110 1.00792 

Damage legacy method MSC CAE 
Fatigue algorithm for  combined 

loading 
0.60804 1.07479 

Damage for sine sweep only using 
authors algorithm for deterministic 

harmonic loading 
0.00875 0.00875 

Damage for sine sweep only using 
authors algorithm for deterministic 

harmonic loading 
0.00944 0.00944 

6. ADDITIONAL RESULTS DERIVED FROM RESEARCH  
ON PROPOSED METHOD 

Results derived from research on the pure stochastic loading 
scenario show that damage varies, and the variation depends on 
the block size (N) used in the inverse Fourier transformation. 
Since there was a need for obtaining information about the statis-
tic of the damage as well as for deriving the damage distribution, 
the research has been extended to a large search population 
consisting of 5,000 samples. 

The research was performed for white noise signal. Wide and 
narrow band signals will be introduced in further research. Addi-
tionally introduced were three different block sizes: 212, 214 and 
216. For fitting distribution, we used the Kolmogorov–Smirnov 
criterion, which assesses the probability of distribution. For test-
ing, we used the different distribution types available in the Python 
library 44. The best-fitted distributions have been narrowed down 
to three with the highest probability of fitting: Gaussian, Exponen-
tiated Weibull and Generalized Extreme Value distributions. 

Note that variation of damage for the considered distribution is 
low as per Tabs. 3–8. 

In Fig. 14, Fig. 16 and Fig. 18, corresponding damage values 
were presented for the searched population for white noise signal 
for three mentioned block sizes for signal clipped at 3 standard 
deviation. Proceeding based on analogy, the same results for 
signal clipped at 5 standard deviation have been presented in Fig. 
20, Fig. 22 and Fig. 24. 

The best-fitted distributions’ visualisations for signal clipped at 
3 standard deviation for three block sizes have been presented in 
Fig. 15, Fig. 17 and Fig. 19. Proceeding based on analogy, the 
results for signal clipped at 5 standard deviation have been pre-
sented in Fig. 21, Fig. 23 and Fig. 25. 

In Tab. 3–Tab. 5, we introduced a populational research re-
sults’ summary made for white noise signal clipped at 3 standard 
deviation and in Tab. 6–Tab. 8 a summary of results for signal 
clipped at 5 standard deviation. 
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Fig. 14. Damage values for searched population for white noise signal, 

signal clipped at 3 standard deviations, block size N  212 

 
Fig. 15. Best-fitted distribution for damage values for searched population 

for white noise signal, signal clipped at 3 standard deviations, 
block size N  212 – Normal distribution 

Tab. 3. Statistical parameters for white noise signal clipped  
at 3 standard deviations, block size N  212 

Distribution type Normal 
Exponentiated 

Weibull 
Generalized 

Extreme Value 

Probability of fitted 
distribution [-] 

0.27452 0.00000 0.00091 

Mean damage [-] 0.16697 0.15973 0.16708 

Standard deviation 
of damage [-] 

0.01341 0.04217 0.01380 

0.13% not lower 
than quoted value of 

damage [-] 
0.12660 0.11231 0.13093 

99.73% not exceed 
quoted value of 

damage [-] 
0.20427 0.33518 0.20641 

 

 
Fig. 16. Damage values for searched population for white noise signal, 

signal clipped at 3 standard deviations, block size N  214 

 
Fig. 17. Best-fitted distribution for damage values for searched population 

for white noise signal, signal clipped at 3 standard deviations, 
block size N  214 – Exponentiated Weibull distribution 

Tab 4. Statistical parameters for white noise signal clipped  
at 3 standard deviations N  214 

Distribution type Normal 
Exponentiated 

Weibull 
Generalized 

Extreme Value 

Probability of fitted 
distribution [-] 

0.80900 0.90471 0.05506 

Mean damage [-] 0.16763 0.16763 0.16768 

Standard deviation 
of damage [-] 

0.01217 0.01217 0.01235 

0.13% not lower 
than quoted value of 

damage [-] 
0.13098 0.13269 0.13450 

99.73% not exceed 
quoted value of 

damage [-] 
0.20149 0.20201 0.20164 

 

 
Fig. 18. Damage values for searched population for white noise signal, 

signal clipped at 3 standard deviations, block size N  216 

 
Fig. 19. Best-fitted distribution for damage values for searched population 

for white noise signal, signal clipped at 3 standard deviations, 
block size N  216 – Exponentiated Weibull distribution 



Michał Ptak, Jerzy Czmochowski                          DOI 10.2478/ama-2023-0065 
Using Computer Technique for Developing Method for Vibration Damage Estimation under Combined Random and Deterministic Loading 

566 

Tab. 5. Statistical parameters for white noise signal clipped  
at 3 standard deviations N  216 

Distribution type Normal 
Exponentiated 

Weibull 
Generalized 

Extreme Value 

Probability of fitted 
distribution [-] 

0.49042 0.99708 0.26514 

Mean damage [-] 0.16785 0.16783 0.16789 

Standard deviation 
of damage [-] 

0.01161 0.01162 0.01175 

0.13% not lower 
than quoted value of 

damage [-] 
0.13287 0.13473 0.13660 

99.73% not exceed 
quoted value of 

damage [-] 
0.20016 0.20152 0.20064 

 

 
Fig. 20. Damage values for searched population for white noise signal, 

signal clipped at 5 standard deviations, block size N  212 

 
Fig. 21. Best-fitted distribution for damage values for searched population 

for white noise signal, signal clipped at 5 standards deviations, 
block size N  212 – Generalized Extreme Value distribution  

Tab. 6. Statistical parameters for white noise signal clipped  
at 5 standard deviations, block size N  212 

Distribution type Normal 
Exponentiated 

Weibull 
Generalized 

Extreme Value 

Probability of fitted 
distribution [-] 

0.00000 0.00001 0.00049 

Mean damage [-] 0.17292 0.17277 0.17313 

Standard deviation 
of damage [-] 

0.01933 0.01827 0.01932 

0.13% not lower 
than quoted value of 

damage [-] 
0.11472 0.12702 0.13327 

99.73% not exceed 
quoted value of 

damage [-] 
0.22669 0.23245 0.24754 

 
Fig. 22. Damage values for searched population for white noise signal, 

signal clipped at 5 standard deviations, block size N  214 

 
Fig. 23. Best-fitted distribution for damage values for searched population 

for white noise signal, signal clipped at 5 standard deviations, 
block size N  214 – Exponentiated Weibull distribution 

Tab. 7. Statistical parameters for white noise signal clipped  
at 5 standard deviations, block size N  214 

Distribution type Normal 
Exponentiated 

Weibull 

Generalized 
Extreme 

Value 

Probability of fitted 
distribution [-] 

0.00000 0.68282 0.07246 

Mean damage [-] 0.17498 0.17495 0.17512 

Standard deviation of 
damage [-] 

0.01547 0.01541 0.01576 

0.13% not lower than 
quoted value of dam-

age [-] 
0.12840 0.13748 0.13901 

99.73% not exceed 
quoted value of dam-

age [-] 
0.21801 0.22694 0.22855 

 
Fig. 24. Damage values for searched population for white noise signal, 

signal clipped at 5 standard deviations, block size N  216 
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Fig. 25. Best-fitted distribution for damage values for searched population 

for white noise signal, signal clipped at 3 standard deviations, 

block size N  216 – Exponentiated Weibull distribution 

Tab. 8. Statistical parameters for white noise signal clipped  
at 5 standard deviations, block size N  216 

Distribution type Normal 
Exponentiated 

Weibull 

Generalized 
Extreme 

Value 

Probability of fitted 
distribution [-] 

0.00193 0.83692 0.52516 

Mean Damage [-] 0.17462 0.17463 0.17467 

Standard Deviation of 
Damage [-] 

0.01354 0.01354 0.01370 

0.13% not lower than 
quoted value [-] 

0.13384 0.13902 0.14047 

99.73% not exceed 
quoted value [-] 

0.21230 0.21650 0.21627 

 
The conclusion, based on the aforementioned research re-

sults, is that every three distributions selected as final give similar 
mean value and standard deviation for the considered signal, 
which match to the experimental mean value and standard devia-
tion. Additionally quoted is the value of damage involved in as-
sessing the damage variation. For this purpose, the quoted value 
of damage for which 99.73% of the population have a lower value 
of damage is: mean, +3 standard deviation in normal distribution; 
and the damage value for which 0.13% of the population have a 
lower value of damage is: mean, –3 standard deviation. The first 
damage value quoted will be needed for sizing units for the con-
sidered load scenario. The second damage quoted can be used to 
avoid undertesting during real testing. For example, for damage 
quoted in Tab. 8, testing should be carried out for the increased 
duty to obtain a mean –3 standard deviation that is higher than or 
equal to the +3 standard deviation obtained for the original duty 
(mean –3 standard deviation damage needs to be increased from 
0.13902 for original duty to a minimum of 0.21650 for increased 
duty) – this approach would ensure that unit will not be un-
dertested during real testing. 

Research results show that the Exponentiated Weibull distri-
bution is the best fitted, when the block size is adequately large – 

i.e., Nx ≥N  214. (Some anomalies were observed in Weibull 
distribution for smaller values, as shown in Tab. 3, and additional-
ly damage variation is higher than for larger block size.) There-
fore, for the final choice, we may decide to use the Exponentiated 
Weibull distribution to arrive at a statistical description of damage 
values for the considered population. 

Additionally, research results show that for stochastic and de-
terministic combination loading scenario, the variability of damage 
is closed for different block sizes used, in opposition to the situa-

tion prevailing concerning the only random load scenario (3 

standard variation is around +/–20% for N  212, N  214 and N 

 216, as shown in Tab. 3–Tab. 5 andTab. 6–Tab. 8). For the only 

random loading scenario, damage variability for block size N  

212 can be around +/60%; however, for block size N  216, the 

same can be around 13% and for block size N  220 it can be 
around 2%. Therefore, for combined stochastic and deterministic 

loading, N  214 is recommended, as for this block size we ob-
served stabilisation of damage variation and obtained a calcula-
tion accuracy close to those associated with higher block sizes. 
This value of block size implies the best relational performance 
with regard to accuracy. 

7. SUMMARY AND CONCLUSION 

A summary of the computer experiments conducted with the 
use of the two combined methods is provided in this section. FEM, 
Monte Carlo method and Python programming allow identification 
of the high conservativism of the legacy frequency domain-based 
method. The research results presented in this paper show that 
the legacy method used by commercial software for combined 
stochastic–deterministic loading scenarios gives highly conserva-
tive damage results, which might result in oversizing military air-
craft or helicopters units. 

The introduction of a novel method of calculation (based on 
combined frequency and time approach) of damage under the 
mentioned loading scenario allows us to precisely perform dam-
age estimation in the time domain together with maintaining the 
efficiency benefit related to frequency domain calculation. Using 
the novel method introduced in this paper allows us to obtain a 
higher accuracy of the results than the legacy method, as well as 
an efficiency of computation that, in comparison with the legacy 
method, is at least comparable if not higher. 

The research result reveals that damage variation is constant 
(characterised by a small variability depending on the block size 
used in the inverse Fourier transformation, in opposition to the 
only random loading scenario as quoted in related research 29). 
Therefore, the conclusion of the presented research is that for 
high amplitude sweep having a simultaneous random nature, it is 

recommended to use N  214 as the block size. 
This novel method allows also for analysis of time series 

population to assess the damage variation, which is impossible 
with use of the legacy method. An additional conclusion is that for 
populational analysis, it is recommended to use Exponentiated 
Weibull distribution for statistical consideration. 

An additional benefit related to using the proposed method is 
that the signal can be clipped with a requested standard deviation 
level e.g., in aerospace industry, it is common to clip the input to 3 
standard deviations. Therefore, this method can replicate real test 
conditions, which is not possible with the use of the spectral 
method. 

Another aspect is that an algorithm can be also fitted to align 
with frequency resolution (block size) during conduction of real 
tests to assess what the variability of damage will be for test rig 

equipment. As for block sizes smaller than N  214, the variability 
might increase, which can imply undertesting. 

Further research results will focus on research on wide band 
and narrow band signals. Additional aspects are an implementa-
tion strain life method for highly loaded parts and the development 
of software for aerospace application with the use of the research 
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results presented in this paper. 
Additionally, the Critical Plane approach will be introduced for 

defining PSD Response function. Future research will also be 
expanded to ascertain whether it is possible to synergistically use 
energy fracture mechanics methods, e.g., Cohesive Zone Model 
method, for damage estimation and life prediction. 
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