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Abstract: A control strategy is derived for fractional-order dynamic systems with Caputo derivative to guarantee collision-free trajectories 
for two agents. To guarantee that one agent keeps the state of the system out of a given set regardless of the other agent’s actions  
a Lyapunov-based approach is adopted. As a special case showing that the given approach to choosing proposed strategy is constructive 
for a fractional-order system with the Caputo derivative, a linear system as an example is discussed. Obtained results extend  
to the fractional order case the avoidance problem Leitman's and Skowronski's approach. 
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1. INTRODUCTION 

Avoidance system, in a colloquial sense means "a safety sys-
tem designed to warn, alert, or assist drivers to avoid imminent 
collisions and reduce the risk of incidents". In fact the subject of 
collision avoidance is much broader than just pre-crash systems. 
One only has to look at the game as a conflict situation in which 
the parties to the conflict choose the strategy suits them, see for 
example [16]. So, this problem can be met not only in problems of 
traffic and transport [19,24], navigation [15] but also in communi-
cation networks, economic, control [18,25,28], social sciences [6], 
and others. Generally the problem for the case of two agents is 
the following: There are two agents. How to determine the strate-
gy of one of them in such way that for given initial state no solu-
tion of one system intersects the avoidance zone no matter what a 
strategy of the second is? 

Several approaches to avoidance control have been consid-
ered. The Lyapunov based approach as the first was proposed in 
[14] and next generalized to the system with an arbitrary time 
domain [22]. Based on [14] conditions for collision avoidance 
between two agents were given in a non-cooperative case in [8]. 
The cooperative control law using the concept of Lyapunov func-
tion for multi-agent system were designed in [27] and next ex-
tended to multi-agent system with bounded input disturbances in 
[27,29]. 

Taking into account accelerating development of both frac-
tional differential equations and their applications, the other exten-
sion of approach to collision avoidance is important. This derives 
from the fact that fractional-order equations are more adequate for 
modeling physical processes than differential equations with an 
integer order and  provides} some explanation of discontinuity and 
singularity formations in nature, see [9,11]. One can find many 
applications of fractional calculus and control in viscoelasticity, 
electrochemistry, electromagnetism, ecnophysics, and others, see 
for example [1,12,13,23,26]. It cannot be ignore that many mod-
eled systems contain non-local dynamics, which can be better 

described using integro-differential operators with a fractional 
order, [9,10,20,21]. Attention should be also paid on the fact when 
a real phenomenon is mathematically modelled, not all variables 
are precisely known. This implies that to aim of studding  ordinary 
differential equations with uncertain determined dynamics it is 
natural to use differential inclusions as the generalization and a 
good tool for analyses of  properties and behaviours’ of systems 
described by ODE. 

The goal of this study is to extend to the fractional order case 
the Lyapunov based approach to collision avoidance. Since we 
consider the system starting from given initial state and the kind of 
history of the system is not consider, the Caputo fractional order 
derivative is taken into account, [3,4,11]. 

The paper is organized as follows. In Section 2 the needed 
notation and facts are presented. Fractional order nonlinear con-
trol systems with Caputo differential and its relation with fractional 
order differential inclusion are introduced. It is shown then the set 
of trajectories of fractional order continuous-time  inclusion asso-
ciated with the given system is closed. In Section 3 there is con-
sidering the avoidance problem. Basing on [14] and [22] condi-
tions for giving the constructive strategy allowing keeping one 
agent in the avoidance zone no matter what the admissible action 
of the other agent are given. To this aim the Lyapunov approach 
is used. As an example of determination the proposed avoidance 
strategies linear fractional order systems are consider  
in Section 4. 

2. FRACTIONAL CONTROL SYSTEMS AND INCLUSIONS  

Let 𝑥: [𝑎, 𝑏]  →  ℝ be an absolutely continuous real valued 

function. The Caputo fractional derivative of order α, 0 < α ≤  1, 
of a function x is defined by, [11]: 

  𝑎
𝐶𝐷𝛼𝑥(𝑡) =

1

𝛤(1−𝛼)
∫

𝑥′(𝜏)

(𝑡−𝜏)𝛼

𝑡

𝑎
𝑑𝜏,  

where 𝛤 denotes the gamma function. 
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Consider the fractional order differential control system 

( 𝑎
𝐶𝐷𝛼𝑥(𝑡))(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)),   𝑥(0) = 𝑥0                (1) 

where 𝑡 ∈ ℝ+, 𝑥(𝑡) = (𝑥1(𝑡) …  𝑥𝑛(𝑡))
𝑇

∈ ℝ𝑛 is a state 

vector with bounded entries, u(⋅) ∈  𝒰 ⊆ ℝm is a control func-
tion defined on the set of admissible controls 

𝒰 = {𝑢(⋅) mesurable, 𝑢(𝑡) ∈ 𝑈 for all 𝑡 ∈ ℝ+} 

such that 𝑈 ⊂ ℝ𝑚 is a compact set of control values, 𝑓: 𝛺 ⊇
ℝ × ℝ𝑛 → ℝ𝑛 . We assume that 𝛺 is an open subset of ℝ ×
ℝ𝑛, the dynamics of system (1), i.e. function 𝑓: 𝛺 × 𝑈 → ℝ𝑛 , of 

𝐶1 − class with the respect to x and continuous with respect to 
each other variable. 

An absolutely continuous function 𝑥(⋅): [𝑡0, 𝑡1] → ℝ𝑛 is a 

solution of (1) if its graph {(𝑡, 𝑥(𝑡)): 𝑡 ∈ [𝑡0, 𝑡1]} is entirely 

contained in 𝛺 and there exists a measurable u with values inside 

𝑈, so that ( 𝑡0
𝐶 𝐷𝛼𝑥(𝑡)) (𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) for almost 

every 𝑡 ∈ [𝑡0, 𝑡1]. This solution forms the trajectory of system (1). 
The motion of this system can be described by the multifunction 

𝐹(𝑥) = {𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)): 𝑢(⋅) ∈ 𝑈}.  

         Consider the fractional order differential inclusion 

( 0
𝐶𝐷𝛼𝑥)(𝑡) ∈  𝐹(𝑡, 𝑥)                  (2) 

Theorem 1: A function 𝑥: [𝑡0, 𝑡1] →  ℝ𝑛 is a trajectory of (1) if 
and only if it satisfies (2) almost everywhere. 
Proof: In fact the reasoning is similar to the classical continuous-
time case, see [5], so we only sketch the proof. The fact that a 
solution of (1) is the solution of (2) is immediate. Suppose that 

𝑥(⋅)  is a solution to (2). For the fixed arbitrary element 𝜔̅ ∈ 𝑈 let 
us define the multifunction 

𝑊(𝑡) = {

{𝜔 ∈ 𝑈: 𝑓(𝑡, 𝑥(𝑡), 𝜔) = ( 0
𝐶𝐷𝛼𝑥)(𝑡)}  if 

                      ( 0
𝐶𝐷𝛼𝑥)(𝑡) (𝑡) ∈  𝐹(𝑡, 𝑥); 

{𝜔̅}                                                 otherwise.

  

The equality 𝑊(𝑡) = {𝜔̅} holds only on a set of the measure 

zero, so ( 0
𝐶𝐷𝛼𝑥(𝑡))(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝜔) is fulfilled for almost 

every 𝑡 ∈ [𝑡0, 𝑡1]. Define a control u in such way that u(t) is the 
first element of this set with respect to the lexicographical order. 
Using the same arguments as in [5,22] one can conclude that 

function u(⋅) is measurable. □ 
Example: Consider the  system 

( 0
𝐶𝐷𝛼𝑥)(𝑡) = 𝑢(𝑡), 𝑥(0) = 0                 (3) 

with 𝑢(𝑡) ∈ 𝑈 = {−1; 1}. Then 𝑥(𝑡) =
1

Γ(𝛼)
∫

𝑢

(𝑡−𝜏)1−𝛼

𝑡

0
𝑑𝜏 =

𝑡𝛼𝑢 

Γ(1+𝛼)
. Let 𝑢𝑛 = 1 if 𝑠𝑖𝑛(𝑛𝑡) ≥ 0   and 𝑢𝑛 = −1 if 

𝑠𝑖𝑛(𝑛𝑡) <  0. Then the sequence of trajectories {𝑥𝑢𝑛
(𝑡)} con-

verges uniformly to zero for any 𝑡. On the other hand, it is easy to 

check 𝑥(𝑡) ≡  0 is not a solution of (3). 
Below we answer on the question when the  limit of system's 

trajectories coincides with the set of its solutions. 

2.1 Closure of the Set of Trajectories  

Let 𝐴 ⊂ ℝ𝑛 be a nonempty set. Recall that a distance of 

point 𝑥 ∈ ℝ𝑛 from set 𝐴, denoted by 𝑑(𝑥, 𝐴), is defined as 
𝑑(𝑥, 𝐴): = inf𝑎∈𝐴 𝑑(𝑥, 𝑎). Recall also that a multifunction 𝐹 

with compact values is Hausdorff continuous if 

𝑙𝑖𝑚𝑥2→𝑥1
𝑑_𝐻(𝐹(𝑥2), 𝐹(𝑥1)) = 0, for every 𝑥1 ∈ ℝ𝑛, where 

𝑑𝐻 is the Hausdorff distance between two nonempty compact 

sets 𝐹(𝑥2) and 𝐹(𝑥1) from ℝ𝑛 defined as 

𝑑𝐻(𝐹(𝑥2), 𝐹(𝑥1)): = 𝑚𝑎𝑥{𝑑(𝑥, 𝐹(𝑥1), 𝑑(𝑥′, 𝐹(𝑥2)): 𝑥

∈  𝐹(𝑥1),  𝑥′ ∈  𝐹(𝑥2 

Theorem 2: Assume that (𝑡, 𝑥) ↦  𝐹(𝑡, 𝑥) is Hausdorff 

continuous map on ℝ × ℝn with compact convex values. Then 

the set of trajectories of inclusion (2) is closed in 𝐶0([0, 𝑇], ℝ). 
Proof: Although the basic idea of proof itself comes from [5] there 
will be needed some facts on approximation of solution to 
continuous-time fractional order dynamic system by the solution to 
discrete fractional order dynamic systems, that can be found in 
the Appendix. 

Suppose that 𝑥𝑛(⋅), 𝑛 ∈ ℕ, is a sequence of trajectories of 

(2) converges uniformly to 𝑥(⋅) on [0, 𝑇]. Note also that the sets 
𝐹(𝑡, 𝑥𝑛) are uniformly bounded. This implies that 𝑥𝑛(⋅) are 

uniformly Lipschitz continuous. It follows that also function 𝑥(⋅) is 
uniformly Lipschitz continuous and therefore, absolutely continu-
ous on [0, 𝑇]. Thus, 𝑥(⋅) is differentiable a.e. on [0, 𝑇] in the 
Caputo sense, see [11]. 

Suppose that ( 0
𝐶𝐷𝛼𝑥)(𝑡) exists, but it does not fulfil inclu-

sion ( 0
𝐶𝐷𝛼𝑥)(𝑡) ∈ 𝐹(𝑡, 𝑥). By Separation Theorem  there 

exist ε > 0 and a vector 𝑝 ∈ ℝ such that 

𝑝( 0
𝐶𝐷𝛼𝑥)(𝑡) ≥ 𝑚𝑎𝑥𝑦∈ 𝐹(𝑡,𝑥(𝑡))(𝑝𝑦) + 𝜀 ≥  𝑝𝑦 + 𝜀 

for all 𝑦 ∈  𝐹(𝑡, 𝑥(𝑡)). Let ℎ > 0. By continuity there exists 

δ > 0 such that for |𝑡 − 𝑡ℎ| ≤ 𝛿 and |𝑥(𝑡) − 𝑥(𝑡ℎ)| ≤ ε, one 
has 

𝑝𝑦 ≤  𝑝 ( 0
𝐶𝐷𝛼𝑥)(𝑡) − 𝜀                  (4) 

for all 𝑦 ∈ 𝐹(𝑡, 𝑥(𝑡)). By Proposition 6  in Appendix there exists 

𝜖, for example 𝜖 = 𝜀, such that 

|( 0
𝐶𝐷𝛼𝑥)(𝑡) −  ( 𝑎

𝐶Δℎ
𝛼𝑥)(𝑡ℎ)| < 𝜀             (5) 

for ℎ small enough, where 𝑎
𝐶Δℎ

𝛼𝑥 denotes the Caputo-type 
difference operator (see Appendix). Then, by the uniform 
convergence and (5) one gets 

lim
𝜈→∞

𝑝( 𝑎
𝐶Δℎ

𝛼𝑥)(𝑡ℎ) = 𝑝( 𝑎
𝐶Δℎ

𝛼𝑥)(𝑡ℎ) >  

𝑝 ( 0
𝐶𝐷𝛼𝑥)(𝑡) − 𝜀. 

Putting y = ( a
CΔh

αx)(th) from (4) one gets 

𝑝( 𝑎
𝐶Δℎ

𝛼𝑥)(𝑡ℎ) ≤ ( 0
𝐶𝐷𝛼𝑥)(𝑡) − 𝜀 

what leads  to the contradiction. □ 
Corollary 3: Assume that (𝑡, 𝑥) ↦  𝐹(𝑡, 𝑥) is Hausdorff 
continuous map on ℝ × ℝ𝑛with compact convex values. Let 

𝑥𝑛(⋅) be a sequence of trajectories of (2) converges uniformly to 

𝑥(⋅) on [0, 𝑇]. 
i. If the graph {(𝑡, 𝑥(𝑡)): 𝑡 ∈ [0, 𝑇]} is entirely contained in Ω 

and all sets 𝐹(𝑡, 𝑥) = {𝑓(𝑡, 𝑥, 𝑢): 𝑢 ∈ 𝑈} are convex, then 

𝑥(⋅) is also a trajectory of the system  

( 0
𝐶𝐷𝛼𝑥)(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)),   𝑢 ∈ 𝑈}.               (6) 

ii. The set of trajectories of inclusion (6) is closed in 

𝐶0([0, 𝑇], ℝ). 
 



Ewa Pawłuszewicz            DOI 10.2478/ama-2023-0066 
Avoidence Strategies for Fractional Order Systems with Caputo Derivative 

572 

Proof: Item 𝑖. ) is driven directly from Theorem 2. Item 𝑖𝑖. ) is the 

consequence of the item 𝑖. ) and Theorem 1. □ 

3. AVOIDANCE STRATEGY  

Let 𝑝𝑖 : ℝ+ ∪ {0} × ℝ𝑛 →  𝑈𝑖 ⊆ ℝ𝑑𝑖 𝑖 = 1,2 be strategies 

from the given class of set valued functions 𝒰i with control values 
𝑢𝑖 ranging in given sets 𝑈𝑖 . These strategies could arise from the 
application of a proper feedback low to the system (1). This im-

plies that 𝑈𝑖 = 𝑈𝑖(𝑡, 𝑥(𝑡)). should be admissible for the given 
system. So, strategies 𝑝𝑖 , 𝑖 = 1,2, have to be such that for given 

(𝑡, 𝑥(𝑡)) it holds that 𝑢𝑖 ∈  𝑝𝑖(𝑡, 𝑥(𝑡)) ⊆  𝑈𝑖 ⊆ ℝ𝑑𝑖   for 𝑖 =

1,2.  
     Consider a multivalued function   

𝐹(𝑡, 𝑥): = {𝑥̅ ∈ ℝ𝑛: 𝑥̅ = 𝑓(𝑡, 𝑥, 𝑢1, 𝑢2), 𝑢𝑖 ∈  𝑝𝑖(𝑡, 𝑥(𝑡)),
𝑖 = 1,2} 

where 𝑓: ℝ+ ∪ {0} × ℝ𝑛 × ℝ𝑑1 × ℝ𝑑2 → ℝ𝑛 is the dynamic 
of the system (1). This means that 

( 0
𝐶𝐷𝛼𝑥)(𝑡) ∈  𝐹(𝑡, 𝑥(𝑡), 𝑝1(𝑡, 𝑥(𝑡)), 𝑝2(𝑡, 𝑥(𝑡)))            (7) 

From Theorem 1 it follows that the trajectory of the system (7) is 
absolute continuous function 𝑥: [𝑡0, 𝑡1] → ℝ𝑛  satisfying frac-
tional order inclusion 

( 0
𝐶𝐷𝛼𝑥)(𝑡) ∈  𝐹(𝑡, 𝑥(𝑡), 𝑝1(𝑡, 𝑥(𝑡)), 𝑝2(𝑡, 𝑥(𝑡))) 

almost everywhere for 𝑡 ∈ [𝑡0, 𝑡1]. 
Let 𝛬 be an open or the closure of an open set in ℝn. Then 

for the system (7):  

1. a set 𝓣 such that 𝒯 ⊆ Λ and into 𝓣 there is no solutions of 

system (7 that must enter for some 𝑝1(𝑡, 𝑥(𝑡)) ∈ 𝒰 no mat-

ter what 𝑝2(⋅, 𝑥(⋅)) ∈ 𝒰 is called the antitarget set, 

2. a closed set 𝒜 ⊆ Λ such that 𝒯 ⊂ 𝒜 is called the avoid-
ance set, 

3. a set Υ𝒜 ≔ Λ𝜀 ∖ 𝒜, where Λ𝜀  is a closure of the open set 
Λ, such that 𝒜 ⊂ Λ𝜀  is called the  safety zone. 

Note that 𝒯 ⊂ 𝒜 ⊂ Λ𝜀  and all these sets are subsets of trajecto-
ries set of the considered system. Moreover, the avoidance set 
can be any set that contains the antitarget set 𝒯. 
     Following [14], let us introduce the following notation. Let 

Φ𝒜: = ℝ+ × Υ𝒜 . By  an attainable set of trajectories 𝛾(𝑡, 𝑥0) at 
time 𝑡 ≥  0 we will mean the set 

𝛾(𝑡, 𝑥0) ≔ {𝑥(𝑡): given 𝑝1(⋅, 𝑥(⋅)) ∈ 𝒰1for all 

𝑝2(⋅, 𝑥(⋅)) ∈ 𝒰2 and given 𝑥0 ∈ Φ𝒜}. 

The set 𝛾(𝑡, 𝑥0) is the set of all motions of the system (7) from 
the initial state 𝑥0 = 𝑥(0) ∈ Φ𝒜  at time 𝑡, i.e. it is the set of all 

motions of the system (7) from 𝑥0 laying in the safety zone Φ𝒜 . 
The fuel motion Γ(𝑡, 𝑥0) from 𝑥0 ∈ Φ𝒜  is the set  

Γ(𝑡, 𝑥0) ≔ ⋃  𝑡∈ℝ+
γ(𝑡, 𝑥0)  

and Γ(Φ𝒜): = ⋃  𝑥0∈Φ𝒜
γ(ℝ+, 𝑥0). 

Theorem 4:  A set 𝒜 is the avoidance set for the nonlinear frac-
tional order system (7) if there exist: 
1. a set Φ𝒜 , 

2. strategy 𝑝1(⋅, 𝑥(⋅)) ∈ 𝒰1, 

3. continuous real function 𝑉 defined on an open subset of Φ𝒜
̅̅ ̅̅̅ 

such that for all (𝑡, 𝑥(𝑡)) ∈ Φ𝒜  it holds: 

i. 𝑉(𝑡, 𝑥(𝑡)) > (𝑡, 𝑥(𝑡))𝑉(𝑡1, 𝑥(𝑡1)) for 𝑥1 ∈ 𝜕𝒜  

and 𝑡1 ≥  𝑡; 

ii. ( 0
𝐶𝐷𝛼𝑉)(𝑡, 𝑥(𝑡)) ≥ 0 for 𝑢2(𝑡) ∈  𝒰2 and  

𝑝1((⋅), 𝑥(⋅)) = 𝑝1(⋅, 𝑥(⋅))|Φ𝒜
. 

Proof: Suppose that for some 𝑥0 = 𝑥(0) ∈ Φ𝒜  there exists 

𝑡2 > 0 such that Γ(𝑡, 𝑥0) ∩ 𝒜 ≠ ∅ for 𝑡 ∈ [0; 𝑡2]. By item 𝑖. ) 

there exist a 𝑡1 ∈  (0; 𝑡2] and 𝑥1 = 𝑥(𝑡1) ∈ Γ(𝑡, 𝑥0) ∩ 𝜕𝒜 be-

ing the end point of the trajectory that lies on the boundary 𝜕𝒜 
such that 𝑉(0, 𝑥0) > 𝑉(𝑡1, 𝑥1). Suppose that 𝑢 = (𝑢1, 𝑢2) is 
an admissible control for the system 

( 0
𝐶𝐷𝛼𝑥)(𝑡) ∈  𝐹(𝑡, 𝑥(𝑡)) = {𝑥̅ ∈ ℝ𝑛: 𝑥̅ = 𝑓(𝑡, 𝑥, 𝑢1, 𝑢2)},

𝑥(0) = 𝑥0 .                     (8) 

Then 𝛾(𝑡, 𝑥0, 𝑢) is the solution of (8) describing the  trajectory of 
this system. Consider the maximal solution of 

( 0
𝐶𝐷𝛼𝑥)(𝑡) =  𝑓𝑢(𝑡, 𝑥(𝑡)),     𝑥(0) = 𝑥0.                          (9) 

and suppose that there is a time interval such that (9) has exactly 

one maximal solution. From the item 𝑖. ) it follows that 

𝑉(𝑡, 𝛾(𝑡, 𝑥0, 𝑢)) is nondecreasing continuous function as long as 
𝛾(𝑡, 𝑥0, 𝑢) stays in Φ𝒜 . For this it is sufficient that for some 𝜀 it 

remains in the set Ψ: = {(𝑡, 𝑥): 𝑉(𝑡, 𝑥) ≥ 𝜀}. 

Suppose that there is some 𝑠 > 0 such that 

𝑉(𝑠, 𝛾(𝑠, 𝑥0, 𝑢)) ≤ 𝜀. From continuity of 𝑉 𝑖t follows there is a 

first such 𝑠. So, one can suppose that 𝑉(𝑡, 𝑥(𝑡)) >

𝜀 for all 𝑡 ∈ [0; 𝑠). Then 𝑡 ↦  𝑉(𝑡, 𝑥(𝑡)) is nondecreasing 

map on [0; 𝑠] and hence 𝑉(𝑠, 𝛾(𝜄 𝑥0, 𝑢)) ≥  𝑉(𝑡, 𝑥(𝑡)) > 𝜀, 

so contradiction. This means that 𝛾 stays in the compact set Ψ for 

all 𝑡 > 0. So, the trajectory is defined for all 𝑡 > 0 and 𝑉 is 

nondecreasing. □ 

4. A LINEAR FRACTIONAL ORDER SYSTEM  

As an example let consider a linear continuous-time fractional 
system with order 0 < 𝛼 < 1 and with the Caputo derivative 

( 0
𝐶𝐷𝛼𝑥)(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑢1(𝑡) + 𝐵2𝑢2(𝑡)                    (10) 

where state 𝑥(𝑡) belongs to some set Λ ⊆ ℝ𝑛, 𝑢𝑖(𝑡) ∈ 𝒰𝑖 ⊆
ℝ𝑑𝑖 , 𝑖 = 1, 2, 𝑡 ∈ [𝑡0 = 0, 𝑡1] and 𝐴, 𝐵1, 𝐵2 are stationary 
matrices of appropriated dimensions.  

Recall that system  ( 0
𝐶𝐷𝛼𝑥)(𝑡) = 𝐴𝑥(𝑡) is  [7] 

1. asymptotically stable iff |𝑎𝑟𝑔(𝑠𝑝𝑒𝑐𝐴)| >
𝜋

2
𝛼, 

2. stable iff either it is asymptotically stable or those critical 

eigenvalues which satisfy |𝑎𝑟𝑔(𝑠𝑝𝑒𝑐𝐴)| =
𝜋

2
𝛼 have geo-

metric multiplicity one. 
In [2] it was shown that linear system  

( 0
𝐶𝐷𝛼𝑥)(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)  

is controllable on 𝑡 ∈ [0, 𝑡1] iff adjoint linear system 

( 𝑡1
𝐶 𝐷𝛼𝑥)(𝑡) = 𝐴𝑇𝑥(𝑡),   

                 𝑦(𝑡) = 𝐵𝑇𝑥(𝑡)  
is observable on this interval. Then the matrix (observability 
gramian) 

𝑊(𝑡) = ∫ 𝐸𝛼(𝐴(𝑡1 − 𝜏)𝛼)𝐵𝐵𝑇𝑡

0
𝐸𝛼(𝐴𝑇(𝑡1 − 𝜏)𝛼)𝑑𝜏       (11) 

where 𝐸𝛼(𝐴𝜏𝛼) = ∑
(𝐴𝜏𝛼)𝑘

Γ(𝑘𝛼+1)

∞
𝑘=0  denotes the Mittag-Leffler 

matrix function, is symmetric positive define and there exists the 
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positive define symmetric matrix such that 𝐴𝑊 + 𝑊𝐴𝑇 ≥ −𝑄.  
      One can choose the matrix function 𝑉(𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡)  

with 𝑃 = 𝑊. Taking the avoidance set 𝒜 = {𝑥 ∈ ℝ𝑛: 𝑥𝑇𝑃𝑥 ≤
const} the condition 𝑖𝑖. ) of Theorem 4 is fulfilled. For such 

avoidance set, the antitarget set 𝓣 should belong to a ball con-

taining the set {0}. Moreover, taking a stationary matrix 𝐷 such 
that 𝐵2 = 𝐵1𝐷, and defining set 𝑈𝑖 , 𝑖 = 1, 2, as 

𝑈𝑖: = {𝑢𝑖: ||𝑢𝑖|| ≤ 𝜉𝑖 , 𝜉𝑖 > 0} 

with 𝜉1 ≥ 𝜉2||𝐷||, where || ⋅ || denotes the Euclidian norm, one 

meets the condition 𝑖𝑖. ) of Theorem 4. Then, the avoidance 
strategy can be designed as 

𝑝1(𝑡, 𝑥) =
𝐵1

𝑇𝑃𝑥

||𝐵1
𝑇𝑃𝑥||

𝜉1  

for all (𝑡, 𝑥) ∉ Σ = ℝ+ × {𝑥 ∈ ℝ𝑛:  𝐷𝐸𝛼(𝐴𝜏𝛼) =
0  for all 𝑡}.  If (𝑡, 𝑥) ∈ Σ, then 𝑢1 can be admissible control, so 

𝑝1(𝑡, 𝑥) = 𝑈1. 
Example:  Let us consider the following system 

( 0
𝐶𝐷0,5𝑥) = [

0 1
1 0

] 𝑥(𝑡) + [
0
1

] 𝑢1(𝑡) + [
0
1

] 𝑢2(𝑡)         (13) 

with 𝑈2 = {𝑢2: |𝑢2| ≤  1} and 𝑡 ∈ [0; 1]. Following [2] it can 

be calculated that at 𝑡 = 0 the Mittag-Lefflet function is as follows 

𝐸0,5(𝐴𝑡0,5) = [

𝐸0,5(𝑡0,5)+𝐸0,75(−𝑡0,5)

2

𝐸0,5(𝑡0,5)+𝐸0,5(𝑡0,5)

2

𝐸0,5(𝑡0,5)+𝐸0,5(𝑡0,5)

2

𝐸0,5(𝑡0,5)+𝐸0,5(𝑡0,5)

2

]  

and the system  

( 0
𝐶𝐷0,5𝑥) = [

0 1
1 0

] 𝑥(𝑡)  

is not stable, but system (13) is controllable, so the respective 
adjoint linear system is observable. The  

𝑊 = ∫ 𝐸0,5(𝐴(1 − 𝜏)0,5)𝐵𝐵𝑇  𝐸0,5(𝐴(1 − 𝜏)0,5)
𝑡

0
𝑑𝜏 =

[
 1,7036 2,2882
2,2882 3,1945

]  

The stabilizing feedback matrix gain is, see [2] 

𝐾 = 𝐵𝑇𝑊−1𝐸0,5(𝐴𝑇𝑡1
0,5) = [ −11,2277 −2,9587] 

Provided the avoidance set  𝒜 = {𝑥 ∈ ℝ2: 𝑥𝑇𝑃𝑥 ≤  𝑎, 𝑎 ∈
ℝ+} the avoidance strategy is 𝑝1(𝑡, 𝑥) = 𝐾𝑥(𝑡) +

𝐵1
𝑇𝑊𝑥

||𝐵1
𝑇𝑊𝑥||

||𝐷||𝜉1, where 𝐷 is such that 𝐵2 = 𝐵1𝐷. Taking 𝐷 as 

identity matrix, we obtain 

𝑝1(𝑡, 𝑥) = −10,6694𝑥1 − 2,1793𝑥2.  

5. CONCLUSIONS  

In the paper collision avoidance control strategy for fractional-
order dynamic systems with Caputo derivative is developed.  
Based on Lyapunov stability method the constructive avoidance 

conditions of determining strategy 𝑝1(⋅, 𝑥(⋅)) ∈ 𝒰1 of one agent 

from the given initial state 𝑥0 = 𝑥(0) such that its collision-free 
trajectories intersects the avoidance set no matter what strategy 
of the second agent's is, are given. As example how the obtained 
avoidance strategies can be easily used it is explained on the 

linear fractional order system. As an intermediate step it is shown 
that the set of trajectories of given system are closed in the set of 
continuous functions on finite time interval. Our future research 
directions include extending these results to non-cooperative 
multi-agents fractional case and next for fractional-order dynamic 
systems with Riemann-Liouville and Grünwald--Letnikov fraction-
al-order operators. 
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APPENDIX 1 

Fractional order discrete-time systems 

It is known that if 𝑥: ℎℤ →  ℝ then forward ℎ −difference op-

erator is defined as (𝛥ℎ 𝑥)(𝑘ℎ) =
𝑥(𝑘+ℎ)−𝑥(𝑘)

ℎ
. If 𝑞 ∈ ℕ0: =

{0,1,2, … }, then 𝛥ℎ
𝑞

: = 𝛥ℎ ∘ ⋯ ∘ 𝛥ℎ  denotes the 𝑞 −fold appli-

cation of the operator 𝛥ℎ , i. e.  (𝛥ℎ
𝑞

 𝑥)(𝑘ℎ) = 

 = ∑ (−1)𝑞−1 (
𝑞
𝑘

)  𝑥(𝑘ℎ + 𝑖ℎ)ℎ𝑞 .  
𝑞
𝑖=0 The extension of 𝑞-fold 

application of operator 𝛥ℎ leads to the fractional ℎ -sum: 

(𝛥−𝛼ℎ  𝑥 )(𝑘ℎ): = ∑ ℎ𝛼𝑎(𝛼)(𝑖)𝑥(𝑘ℎ − 𝑖ℎ)    𝑘
𝑖=0                   (1) 

where  𝑘 ∈ ℕ0 and 𝑎(𝛼)(𝑖) = (−1)𝑖 𝛼(𝛼−1)⋯(𝛼−𝑖+1)

𝑖!
 .  

Definition 1: Let 𝛼 ∈ (𝑞 − 1, 𝑞], 𝑞 ∈ ℕ.  Then, the Caputo - 

type fractional ℎ − difference of order 𝛼 for a function 𝑥: ℎℤ →
ℝ is defined as 

(Δ𝛼ℎ  𝑥 )(𝑘ℎ) = (Δℎ
−𝑞−𝛼

  (Δℎ
𝑞

 𝑥)) (𝑘ℎ)               (2) 

From Definition 5 it follows that 

1. if 𝑞 = 1 then  (Δ𝛼ℎ𝑥)(𝑘ℎ) = (Δ−(1−𝛼)ℎ(Δℎ𝑥))(𝑘ℎ), 

2.  if 𝛼 = 𝑞 ∈ ℕ, then  (Δ𝛼ℎ𝑥)(𝑘) = (Δℎ
𝑞

𝑥)(𝑘) =

ℎ𝑞 ∑ (
𝑞
𝑘

)
𝑞
𝑖=0 𝑥(𝑘 + 𝑖). 

Consider the discrete fractional system of the form 

(Δ ℎ
𝛼 𝑦)(𝑘ℎ) =  𝑓(𝑘ℎ, 𝑦(𝑘ℎ), 𝑢(𝑘ℎ)), 𝑦(0) = 𝑦0                (3) 

where 𝑦(⋅) ∈ ℝ𝑛, 𝑘 = ⌊
𝑡

ℎ
⌋ + 1 with  the sign  ⌊⋅ ⌋ being the floor 

function and 𝑢(⋅) - a control vector function defined on the set 

𝒱 = {𝑢(⋅) measurable, 𝑢(𝑘ℎ) ∈  𝑉 for all 𝑘 ∈ ℕ} ⊆ ℝ𝑚  
with the set of control values 𝑉 ⊂ ℝ𝑚 being compact. We say 

that a function 𝑦(⋅) defined on a set {𝜅ℎ , (𝜅 + 1)ℎ, … , 𝑘ℎ},
𝜅 < 𝑘, 𝜅 ∈ ℕ, is a solution of (16) if its graph 

{(𝑛ℎ, 𝑦(𝑛ℎ)): 𝜅ℎ ≤  𝑛ℎ ≤  𝑘ℎ} is entirely contained in  
Ωℎ ⊆ (ℎℕ)𝑎 × ℝ𝑛,  and there exists a measurable control 

function 𝑢(⋅) with values inside 𝑉, so that ( Δ𝑎
𝛼ℎ𝑦)(𝑘ℎ)  =

 𝑓(𝑘ℎ, 𝑦(𝑘ℎ), 𝑢(𝑘ℎ)) for almost every 𝑡 ∈ {𝜅ℎ, (𝜅 +
1)ℎ, … , 𝑘ℎ}. This solution forms the k −steps trajectory of sys-
tem (16).  

Proposition 1: Suppose that state function 𝑥: ℝ → ℝ𝑛 is abso-

lutely continuous. Then the solution 𝑥 to system 

( 𝐷𝛼
0
𝐶 𝑥)(𝑡) =  𝑓(𝑡, 𝑥(𝑡)),   𝑥(0) =  𝑥0, 𝑡 ∈ (0, 𝑇]       

can be approximated by the solution of system: 

(Δℎ
𝛼𝑦)(𝑘ℎ)  =  𝑓(𝑘ℎ, 𝑦(𝑘ℎ)), 𝑦(0) =   𝑦0, 𝑡 ∈  (0, 𝑇](ℎℕ)𝑎

   

where 𝑘 = ⌊
𝑡

ℎ
⌋ + 1 with in values via the limit limℎ→0 𝑦(𝑘ℎ) =

𝑥(𝑡). 
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