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Abstract: Artificial Intelligence (AI) has gained a prominent role in the medical industry. The rapid development of the computer science 
field has caused AI to become a meaningful part of modern healthcare. Image-based analysis involving neural networks is a very important 
part of eye diagnoses. In this study, a new approach using Convolutional Gated Recurrent Units (GRU) U-Net was proposed  
for the classifying healthy cases and cases with retinitis pigmentosa (RP) and cone–rod dystrophy (CORD). The basis for the classification 
was the location of pigmentary changes within the retina and fundus autofluorescence (FAF) pattern, as the posterior pole or the periphery 
of the retina may be affected. The dataset, gathered in the Chair and Department of General and Pediatric Ophthalmology of Medical  
University in Lublin, consisted of 230 ultra-widefield pseudocolour (UWFP) and ultra-widefield FAF images, obtained using the Optos 
200TX device (Optos PLC). The data were divided into three categories: healthy subjects (50 images), patients with CORD (48 images) 
and patients with RP (132 images). For applying deep learning classification, which rely on a large amount of data, the dataset  
was artificially enlarged using augmentation involving image manipulations. The final dataset contained 744 images. The proposed  
Convolutional GRU U-Net network was evaluated taking account of the following measures: accuracy, precision, sensitivity, specificity  
and F1. The proposed tool achieved high accuracy in a range of 91.00%–97.90%. The developed solution has a great potential  
in RP diagnoses as a supporting tool.  
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1. INTRODUCTION 

Retinitis pigmentosa (RP) is a group of inherited retinal dis-
eases characterised by the progressive dysfunction of rod and 
cone photoreceptors in the retina. The majority of cases are inher-
ited in Mendelian patterns, namely autosomal dominant (30%–
40% of cases), autosomal recessive (50%–60%) or X-linked (5%–
15%) inheritance. Depending on the type of cell primarily affected, 
RP can be categorised into rod-dominant (classical RP) and cone-
dominant cone–rod dystrophy (CORD) [5]. According to RetNet 
[22], more than 300 causative genes have been identified for RP 
so far, of which 58 genes have been identified in families with 
autosomal recessive RP. It is the most common inherited retinal 
dystrophy globally, affecting 1 in 4,000 individuals [8, 13]. In the 
past two decades, extensive genetic studies on RP not only led to 
the identification of the molecular basis in at least 60% of families 
but also set the basis for gene-based therapy. Although new 
treatments for RP such as gene therapy are being developed [25], 
current practice mainly involves care for residual visual function 
and surgery or medical therapy for complications. Thus, an ap-
propriate clinical evaluation and estimation method for residual 
visual function and structure in patients with RP should be estab-
lished. Identifying potential anatomical biomarkers for disease 
progression in RP is highly relevant for assessing treatment end 
points in RP in clinical trials. 

Artificial Intelligence (AI) has gained a prominent role in the 

medical industry. The rapid development of the computer science 
field has caused that AI to become a meaningful part of modern 
healthcare. Image-based analysis involving neural networks  
is a very important part of eye diagnoses [18]. These modern 
approaches allow us to find and localise the patterns that are 
characteristic of the particular disease. The neural network meth-
ods are the perfect tool to distinguish between healthy people and 
patients suffering from various disorders. Moreover, not only 
particular diseases but also their place of occurrence may be 
recognised.  

The methods and system involving AI are additional support 
indicating the proper diseases or alerting when the specific fea-
tures are located [18, 19, 21]. These methods may increase the 
detection of diseases, especially rare diseases, such as retina 
problems, in the areas where there are no specialists. The pa-
tients would gain the knowledge from AI. Moreover, AI will defi-
nitely shorten the consultation time.  

Applying AI algorithms reduces the diagnosis time, supports 
decision-making and avoids misdiagnosis, and reduces the cost of 
treatment or provides the treatment recommendation [16].  

Despite the undoubted advantages of existing solutions, there 
is still a niche in the quick and effective diagnosis of eye diseases, 
especially rare or genetic diseases. The main motivation of this 
study is to apply AI for the classification of eye changes caused by 
RP disease. It is very important to distinguish between RP and 
CORD. 
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The main aim of this study is to classify RP. The Convolutional 
Gated Recurrent Units (GRU) U-Net was created for this purpose. 
The dataset, gathered in the Chair and Department of General 
and Pediatric Ophthalmology of Medical University in Lublin, 
consisted of 230 ultra-widefield fundus photography (UWFP) and 
ultra-widefield FAF (UWFAF) images. For applying deep learning 
classification, which rely on a large amount of data, the dataset 
was artificially enlarged using augmentation involving image 
manipulations. Three classes were defined: healthy cases, cases 
with CORD and cases with RP on the periphery of an eye.  

This study proposes that Convolutional GRU U-Net is an ade-
quate tool for the classification of retina dystrophy and healthy 
cases. 

The following research questions have been formulated: 

 RQ1: Is it possible to achieve satisfactory classifier accuracy 
for the proposed the Convolutional GRU U-Net model? 

 RQ2: Is it possible to distinguish RP from CORD and healthy 
cases from Optos images? 

 RQ3. Is it possible to achieve satisfactory classifier accuracy 
while reducing the raining time?  

2. RELATED WORKS 

A great number of studies concern application of AI for medi-
cal purposes, including U-Net solutions.  

2.1. RP 

Patients with RP typically experience night blindness and pro-
gressive loss of peripheral vision in both eyes during their first 
decades of life [36]. This leads to the loss of central vision and 
progression to total blindness. Typical form of RP is a long-lasting 
disease that usually evolves over several decades. However, 
there are extreme cases with a rapid evolution over two decades 
or a slow progression that never leads to blindness. This long-
lasting disease is classified into three stages: early, middle and 
end stages. In the early stage, night blindness is the main symp-
tom. In the mid stage, visual field testing shows mild periphery 
scotomas that tend to enlarge towards extreme periphery and 
macular areas. In the end stage, patients can no longer move 
autonomously, as a result of peripheral vision loss (classical 
tunnel vision), with few degrees of remaining visual field around 
this the main diagnostic tool to assess the visual function. 

Variable expression in fundus changes may be present in dif-
ferent patients with different causes, in different patients caused 
by mutations in the same gene, in different patients from the same 
family and probably even in different eyes of the same patient. 

The classic ophthalmoscopic findings in RP are typically de-
scribed as a triad: retinal blood vessel attenuation, waxy pallor of 
the optic disc and intraretinal pigmentation in a bone–spicule 
pattern in the periphery of the retina. Abnormal retinal pigmenta-
tion occurs when pigment from disintegrating retinal pigment 
epithelial cells migrates into the superficial (“inner”) retina as a 
response to photoreceptor cell death [22]. Initially, the pigmentary 
abnormality appears as a fine dusting extending from the mid to 
the far peripheral retina. Later, “bone-spicules” form throughout 
the mid and the far retinal periphery due to accumulations of 
pigment surrounding retinal blood vessels. In advanced RP, atro-
phy of the choriocapillaris may expose the large choroidal vessels 
beneath. CORD presents with visual acuity loss, photophobia, and 

dyschromatopsia, showing abnormal cone photopic electroretino-
graphy (ERG) response with no or mild rod involvement and 
pigmentary changes within the posterior pole [12]. 

The diagnosis and monitoring of RP require a comprehensive 
approach, encompassing patient history, fundus examination with 
fundus wide-field photos, wide-field fundus autofluorescence 
(FAF), visual field and full-field ERG. These diagnostic tools play a 
crucial role in detecting early signs of RP in at-risk individuals and 
monitoring the progression of the disease. 

There is a progress towards preventing the loss of or restoring 
the function of rod photoreceptors in retinal dystrophies. There is 
also a need for a standardised device for quantifying the loss of 
the structure and function of the retina in RP. The emergence of 
molecular therapies for inherited retinal degenerations has high-
lighted the need for imaging modalities that can sensitively identify 
structural disease progression and robust methods to analyse 
disease progression. 

Both UWFP and UWFAF imaging using a scanning laser oph-
thalmoscope are imaging techniques that enable clinicians to 
obtain fundus images with a 200° angle of view easily and nonin-
vasively [24]. FAF is a noninvasive method that evaluates retinal 
disease and reflects retinal pigment epithelium functions by visual-
ising the accumulation of lipofuscin. FAF images of patients with 
RP show hyperfluorescence in the early disease stages, whereas 
hypofluorescence corresponds to lesions in later stages. In typical 
RP, an autofluorescence ring, which represents a hyperfluores-
cent ring in FAF images, might be observed at the border separat-
ing the dysfunctional retina from the functional retina [27, 30]. 

2.2. Tools for RP classification  

Various appliances for improving the modern eye healthcare 
have been developed using AI. The new models have been creat-
ed to classify various eye diseases, including RP, as a tool sup-
porting diagnoses. Modern systems have also been developed for 
these purposes. Many types of images have been taken into 
consideration. 

The identification of normal and selected diseases based on 
ultra-wide field imaging is described in a previous study [35]. 
Three deep learning networks, namely EfficientNet-B7, DenseNet 
and ResNet-101 were applied to classify diabetic retinopathy, 
retinal vein occlusion, pathologic myopia, retinal detachment, RP, 
age-related macular degeneration, vitreous opacity and optic 
neuropathy. The best accuracy was obtained for the EfficientNet-
B7 network.  

Image-based diagnosis using the Deep Neural Network (DNN) 
model Visual geometry group-16 (VGG-16) has been applied to 
classify patients suffering from RP disease and healthy patients 
[21]. Two types of images were involved: 373 UWFP and 373 
UWFAF. The obtained results proved that the proposed model is 
efficient for RP recognition (UWFP: sensitivity 99.3%, specificity 
99.1%, and UWFAF: sensitivity 100%, specificity 99.5%). It was 
also stated that further studies involving AI are required for RP 
diagnosis. 

Glaucoma, maculopathy, pathological myopia and RP were 
classified using three deep learning approaches, namely Mo-
bileNetV2, InceptionV3 and AlexNet, in a previous study [14]. Due 
to small amount of data, transfer learning with ImageNet was 
applied. The Kaggle dataset was used for the studies. The best 
results obtained MobileNetV2: up to 98.4% for accuracy, 96% for 
sensitivity and 99% for specificity.  
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A previous study has used Convolutional Neural Network 
(CNN) for automatic recognition of healthy people and people with 
the diseased retina based on retinal fundus images [18]. The 
images were obtained from the Friedrich-Alexander University 
machine learning data repository and from the eye hospital in 
Bangalore, India. Both data were augmented to obtain the proper 
number of images for classification. The average accuracy was 
reached between 96.5 % and 99.7%. 

Four pretrained neural networks, namely AlexNet, DenseNet-
161, ResNet-50 and ResNet-152, were applied for infrared (IR) 
images, optical coherence tomography (OCT) images and the two 
combined [20]. The highest precision was obtained for the combi-
nation of IR and OCT images. The studies were performed on the 
Johns Hopkins University (JHU) dataset. 

The end-to-end deep learning approach consisting of Dense-
Net, Recurrent Neural Network and Fully Connected layer was 
applied for predicting treatment requirements for the management 
of neovascular age-related macular degeneration [28]. Three 
classes were defined as low, intermediate and high. The obtained 
accuracy was up to 72%, sensitivity was 82% and specificity was 
71%.  

The RP classification based on OCT images using pixel-
based and component-based methods was described in a previ-
ous study [8]. Four classifiers, namely Random Forest pixel-
based, AdaBoost.M1 pixel-based, Random Forest component-
based and AdaBoost.M1 component-based, were applied with 
great success. The obtained accuracy exceeded 99%. The preci-
sion was in the range of 42.45%–68.40%, the recall between 
52.2% and 79.4%, and F1 between 46.76% and 64.69%. 

Classification methods were also applied for developing ex-
pert systems for various eye disease. An expert system, dedicat-
ed to diabetic retinopathy and RP, consisting of extracting colour 
channels, red and green, was used [10]. Then, the Sobel method 
for edge detection was applied for the red channel, and the region 
of interest was determined for the green channel. In the next step, 
pixels with high intensity from the red channel and low-intensity 
pixels from the green channel were merged. Finally, prepro-
cessing included the masking and removal of unwanted regions, 
and pixels were interpolated to the original image. The data were 
obtained using a CANON CF-60UVi camera with a 60o FOV. The 
achieved accuracy was 85.45%.  

Another expert system for RP classification was used in a 
previous study [7]. It aimed at the automatic segmentation of 
pigment deposits in the fundus of the eye images. OCT images 
and those obtained from fundus camera were preprocessed. 
Then, the watershed transformation was applied to obtain homo-
geneous regions. This made the proposed method highly resistant 
to high variabilities in pigment deposits in terms of colour and 
shape. Even small pigment deposits were recognised. The system 
accuracy, precision, recall and F1 score were 97.90%, 74.43%, 
98.44% and 59.04%, respectively. 

After analysing the studies concerning applying AI for RP di-
agnosis, the authors noticed that there are no studies involving 
the location of retinal changes based on Optos images. Therefore, 
the aim of this study is to propose a Convolutional GRU U-NET 
classifier to distinguish between a healthy eye and an eye with 
pigmentary changes located in the centre (CORD) or on the pe-
riphery of the retina (RP). 

3. MATERIALS AND METHODS 

3.1. Dataset 

UWFP and UWFAF images have been obtained using an Op-
tos 200TX device (Optos PLC). Medical records of patients with 
cone–rod and cone–rod dystrophies at the Chair and Department 
of General and Pediatric Ophthalmology of the Medical University 
of Lublin were retrospectively reviewed. Patients were included if 
they had UWFAF and clinical characterisation of their retinal 
dystrophy. UWFP and UWFAF imaging were performed after pupil 
dilation with topical 0.5% tropicamide. All patients underwent 
visual acuity testing, slit lamp biomicroscopy and dilated fundus 
examination. All patients had clinical findings consistent with RP 
or CORD. UW-FAF characteristics were analysed qualitatively by 
two reviewers. The study included 69 eyes of 35 patients. All 
patients were identified and diagnosed clinically by an inherited 
retinal disease specialist. The control group consisted of 15 
healthy subjects (30 eyes). A total of 230 optomap retinal images 
were obtained. The data were divided into three categories: 
healthy subjects (50 images), patients with CORD (48 images) 
and patients with RP on the periphery of the retina (132 images). 
For applying deep learning classification, which requires a large 
amount of data, the dataset was artificially enlarged using aug-
mentation involving image manipulations [38]. The images were 

rotated by 10. Additionally, they were converted to greyscale. 
Previous study involving CNN and their various modifications, has 
proven how important role plays a properly selected and suffi-
ciently large dataset. However, in studies using medical data, 
there is almost always a problem of shortage of training data due 
to various difficulties in obtaining data. Data augmentation is 
commonly used in such cases. As numerous studies indicate 
[1,2,6,32,37] that data augmentation improves the quality of clas-
sification, regardless of the measure used. In this study, the aug-
mented dataset was exclusively utilised for training the model. 

Deep learning models were employed for acquiring RP fea-
tures and associated classifications from the complete input im-
ages. Automatically, irrelevant regions, including those beyond the 
circular boundary of the main object, were eliminated. These 
unimportant areas may arise from artefacts introduced during 
image acquisition. Subsequent to the removal of irrelevant por-
tions, the images were resized to 300 × 375 pixels, with pixel 
values ranging from 0 to 1.  

The final dataset, used in this study, contained the following 
number of images: 264 for healthy persons, 240 for patients with 
RP in the centre of the retina and 240 for patients with RP on the 
periphery of the retina. The images representing RP and CORD 
are shown in Fig. 1. In case of RP, the most typical changes in the 
fundus of the eye are narrow vessels and pigmented changes in 
the periphery of the fundus. The macular area is characterised by 
shiny reflexes. In case of CORD, the changes are located in the 
centre of the retina. 

The final dataset, used in this study, contained the following 
number of images: 264 for healthy persons, 240 for patients with 
RP in the centre of the retina and 240 for patients with RP on the 
periphery of the retina. The images representing RP and CORD 
are shown in Fig. 1. In case of RP, the most typical changes in the 
fundus of the eye are narrow vessels and pigmented changes in 
the periphery of the fundus. The macular area is characterised by 
shiny reflexes. In case of CORD, the changes are located in the 
centre of the retina. 
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Fig. 1.   Example images from dataset representing RP and CORD 
dystrophy. Wide-field fundus photography obtained using Optos 
device 

3.2. GRU 

The GRU model, widely recognised as a prominent variation 
of Long Short-Term Memory (LSTM) [13], combines the forgetting 
gate and input gate into a single update gate while also merging 
the cell state and hidden state. Consequently, the resulting GRU 
model is simpler and faster than the conventional LSTM model. 
This characteristic proves particularly advantageous when han-
dling large datasets, allowing for substantial time savings with only 
minimal performance discrepancies compared to the standard 
LSTM model. Both LSTM and GRU models excel at preserving 
crucial features by using various gates, ensuring these features 

remain intact even during long-term transmissions. At time t, the 
new state can be calculated using Eq. (1) [9]: 

𝑢𝑡 = (1 − 𝑧𝑡) ∘ 𝑢𝑡−1 + 𝑎𝑔 ∘ 𝑢𝑡̃    (1) 

where ut is the new GRU state, ut−1 is the previous GRU state, 

ag is the update gate and ut̃ is the current candidate sate with a 

new collection of information. 
The update gate plays a crucial role in determining the bal-

ance between retaining past information and incorporating new 
information. Its primary function is to regulate the extent to which 
information from the previous state influences the current state. 

By adjusting the value of ag, the degree to which the information 

from the previous state is integrated into the current state is con-

trolled. A higher value of ag signifies a greater incorporation of 

information from the previous state. Eq. (2) defines the process of 
update gate modification [9]: 

𝑎𝑔 = 𝛿(𝑊𝑧𝑥𝑡 + 𝑅𝑧𝑢𝑡−1 + 𝑏𝑧)    (2) 

where xt is the data vector at time t, Wz is update gate weights at 
time t, Rz is update gate weights at time t − 1 and bz is bias. 

The current candidate state is calculated using Eq. (3) [9]: 

𝑢𝑡̃ = tanh(𝑊ℎ𝑥𝑡 + 𝑟𝑡 ∘ 𝑅𝑧𝑢𝑡−1) 𝑏𝑧    (3) 

where rt is a reset gate at time t. Its role is to control the flow of 
information between current and previous states.  

In numerous modelling tasks, having access to both past and 
future states proves advantageous. However, Conventional GRU 
networks process sequences in a temporal order, disregarding 
any future state. To address this limitation, Bidirectional GRU 
networks are introduced, which expand unidirectional GRU net-
works by incorporating a second layer. In this additional layer, the 
hidden-to-hidden connections flow in the opposite temporal order, 
enabling the model to capture the future state alongside the tradi-
tional past state. This bidirectional approach enhances the net-
work’s ability to understand and leverage information from both 
temporal directions. 

3.3. Proposed methodology 

This network is inspired from previous studies [3, 15, 29, 34]. 
The network utilises the strengths of Bidirectional GRU networks 
as well as densely connected convolutions. The individual com-
ponents are described in detail in the following sections. The 
whole structure of it is presented in Fig. 2.  

3.3.1. Encoding 

The modified U-Net’s contracting path involves a series of four 
steps. Each step comprises two convolutional filters of a size of 

3 × 3, followed by a 2 × 2 max pooling function and the Recti-
fied Linear Unit (ReLU) activation. At each step, the number of 
feature maps is doubled. The contracting path progressively 
extracts image representations while increasing the dimensionality 
of these representations layer by layer. Ultimately, the final layer 
in the encoding path produces a high-dimensional image repre-
sentation with rich semantic information. 

In the original U-Net, the last step of the encoding path con-
sists of a sequence of convolutional layers. This enables the 
network to learn diverse types of features. However, this approach 
may result in the learning of redundant features through succes-
sive convolutions. To address this issue, densely connected 
convolutions were introduced [15]. This enhancement allows the 
network to improve its performance by leveraging the concept of 
“collective knowledge”, which involves concatenating feature 
maps learned from all previous convolutional layers with the fea-
ture map obtained from the current layer. These concatenated 
feature maps are then forwarded as input to the subsequent 
convolutional layer. This strategy promotes the reuse of valuable 
feature maps throughout the network, mitigating the risk of learn-
ing redundant features. 

The idea of densely connected convolutions has some ad-
vantages over regular convolutions [15]. First of all, it helps the 
network to learn a diverse set of feature maps, instead of redun-
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dant features. Moreover, this idea improves the network’s repre-
sentational power by allowing information flow through the net-
work and reusing features. Furthermore, densely connected con-
volutions can benefit from all the produced features before it, 
which prompts the network to avoid the risk of exploding or van-
ishing gradients. In addition, the gradients are sent to their respec-
tive places in the network more quickly in the backward path. The 

idea of densely connected convolutions was implemented in the 
proposed network, due to which two consecutive convolutions are 

introduced as one block. There is a sequence of N blocks in the 
last convolutional layer of the encoding path, as shown in Fig. 3. 
These blocks are densely connected. 

 
Fig. 2. The architecture of Convolutional GRU U-Net segment-based 

 
Fig. 3. U-Net dense layer  

3.3.2. Decoding 

The decoding path begins by applying an up-sampling func-
tion to the output of the previous layer. In the traditional U-Net 
model, the corresponding feature maps from the contracting path 
are cropped and copied to the decoding path. These feature maps 
are then concatenated with the result of the up-sampling function. 
However, in this approach, the Bidirectional Convolutional GRU 
was utilised to process these two types of feature maps in a more 

intricate manner (Fig. 4). 
The set of feature maps copied from the encoding part is ini-

tially passed through an up-convolutional layer. This layer applies 

an up-sampling function, followed by a 2 ×  2 convolution opera-
tion, effectively doubling the size of each feature map and halving 
the number of feature channels. Consequently, the resulting 
feature maps progressively increase in size throughout the ex-
panding path, layer by layer, until they reach the original size of 
the input image after the final layer.  

 

 
Fig. 4. Bidirectional ConvGRU  
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3.3.3. Batch normalisation 

Following the up-sampling, the feature map is processed by a 
batch normalisation (BN) operation. During the training phase, 
intermediate layers often encounter a challenge where the distri-
bution of activations tends to vary. This issue can significantly 
slow down the training process as each layer needs to adapt to 
new distributions in every training step. To address this problem, 
BN [17] is employed to enhance the stability of the neural network. 
BN standardises the inputs to a layer by subtracting the batch 
mean and dividing it by the batch standard deviation (SD). This 
normalisation process effectively accelerates the training speed of 
the neural network. Additionally, in certain cases, BN provides a 
regularisation effect, which can further improve the model’s per-
formance. 

3.3.4. Bidirectional Convolutional GRU 

The output of the BN step is fed to the Bidirectional Convolu-
tional GRU layer. The main disadvantage of the standard GRU is 
that these networks does not take account of the spatial correla-
tion since these models use full connections in input-to-state and 
state-to-state transitions. To solve this problem, bidirectional 
convolutional GRU was proposed, which exploited convolution 
operations. The idea of this layer based on LSTM was presented 
in a previous study [31]. It consists of an input vector xt, an output 

vector ut, a reset gate rt, update gate ag and candidate activa-

tion vector ut̃. The update rule for the input vector xt and the 
previous output ut−1 is given by the following equations (for 
convenience, the subscript and superscript from the parameters 
were removed): 

𝑟 = σ(𝑊𝑟∗𝑛[𝑢𝑡−1; 𝑥𝑡] + 𝑏𝑟)    (4) 

𝑎 = σ(𝑊𝑢∗𝑛[𝑢𝑡−1; 𝑥𝑡] + 𝑏𝑢)    (5) 

𝑐 = ρ(𝑊𝑐∗𝑛[𝑥𝑡; 𝑟⨀𝑢𝑡−1] + 𝑏𝑐)    (6) 

𝑢𝑡 = a⨀𝑢𝑡−1 + (1 − a)⨀𝑐    (7) 

where σ and ρ are sigmoidal and ReLU functions, respectively; 

∗ n denotes a convolution kernel of size n × n; ⨀ indicates 
Hadamard product operation. Brackets are presented to indicate a 

feature concatenation; and r, a, c and ut denote the typical ele-
ments (reset, update, current memory content and a new state) of 
GRU. 

4. RESULTS 

4.1. Classifier evaluation 

The proposed Convolutional GRU U-Net segmentation-based 
network was evaluated taking account of the following measures 
[4]: accuracy (Eq. 8), precision (Eq. 9), sensitivity (Eq. 10), speci-
ficity (Eq. 11) and F1 score (Eq. 12). A series of experiments were 
performed considering a random split of the data into training and 
testing sets: 80% and 20%, respectively. To reduce the random-
ness of the results, 10 iterations were performed independently. 
To assess the effectiveness of the classifier, commonly used 
measures were used: accuracy, precision, sensitivity, specificity 
and the F1 score [23,33]. 

Tab. 1. Accuracy results obtained using Convolutional GRU U-NET 

Class Mean (%) Max (%) Min (%) SD (%) 

All 94.05 97.90 91.00 3.97 

 
Tab. 2.  Accuracy results of healthy, RP and CORD cases obtained using 

Convolutional GRU U-NET 

Class Mean (%) Max (%) Min (%) SD (%) 

Healthy 95.48 97.91 92.14 3.86 

CORD 94.87 97.98 92.07 4.89 

RP 95.15 97.92 92.09 2.90 

The accuracy results for the proposed Convolutional GRU U-
Net for RP classification based on Optus images are provided in 
Tab. 1. This measure gives the information about the ability to 
distinguish between healthy cases and the cases with RP dis-
ease. The obtained values confirm that the segmentation method 
involving deep learning is a suitable tool for RP recognition pur-
poses. The mean accuracy exceeds 94%, which proves that the 
classification RP has been developed with great success. The 
detailed accuracy results for three defined classes are presented 
in Tab 2. The proposed tool recognises heathy eyes, cases 
CORD and pigmentary changes localised on the periphery of the 
retina. The obtained minimum accuracy was greater than 92%. 
The maximum measures almost reached 98%. 

Precision results for the developed tool is presented in Tab. 3. 
The mean value exceeds 95% for each class and ranges between 
90% and 98%. The high value of this measure means that the 
network does many correct classifications or only few misclassifi-
cations.  

Tab. 3.  Precision results of healthy, RP and CORD cases obtained using 
Convolutional GRU U-NET 

Class Mean (%) Max (%) Min (%) SD (%) 

Healthy 95.85 98.36 91.90 3.74 

CORD 95.47 98.36 91.90 4.70 

RP 95.32 98.41 90.00 3.90 

Tab. 4.  Sensitivity results of healthy, RP and CORD cases obtained 
using Convolutional GRU U-NET 

Class Mean (%) Max (%) Min (%) SD (%) 

Healthy 94.71  97.56 91.54 3.47 

CORD 93.41 96.82 90.27 3.82 

RP 95.11 97.91 91.38 2.75 

Sensitivity measures how correctly the model can classify 
positive instances. The obtained results, presented in Tab. 4, 
indicate that the developed tool has a great performance. The 
mean sensitivity exceeded 93%, while the values were in the 
range of 90.27%–97.91%. 

Specificity measures the amount of real negative data that are 
classified as negative ones. The obtained values are summarised 
in Tab. 5. As it can be seen, the mean measure exceeds 92%, 
while the whole calculated indicator is between 89.64% and 
99.17%. The higher specificity value was obtained for cases with 
RP diseases located in the centre of the retina. 
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Tab. 5.  Specificity results of healthy, RP and CORD cases obtained 
using Convolutional GRU U-NET 

Class Mean (%) Max (%) Min (%) SD (%) 

Healthy 95.42 98.36 92.28 3.61 

CORD 98.46 99.17 95.36 3.27 

RP 92.94 97.64 89.64 2.50 

The harmonic mean of F1 scores was calculated based on 
precision and specificity. Based on the previous values of preci-
sion and specificity, it can be assumed that this measure also 
gained high values. The mean value exceeded 94%. The pro-
posed tool recognises the cases with RP located in the central of 
the retina the best. Slightly worse results were obtained for the 
cases with RP located in the periphery of the retina and healthy 
ones. However, these differences are very small, up to 2.79%. 
The SD in all measures (Tabs. 1–6) is very low, which means that 
the observations are gathered around the mean and thus repeat-
able. 

The learning parameters of the proposed tool are presented in 
Figs. 5 and 6. As can be seen from Fig. 5, after reaching 40 
epochs, the accuracy, both for training and test sets, is on the 
same level (high). Another element indicating how well the neural 
network works is the loss value. As can be observed in Fig. 6, 50 
epochs are enough to minimise the loss. These two parameters 
prove that the learning process was enough to obtain high accu-
racy values.  

 
Fig. 5.   Accuracy obtained for training and test data within 50 epochs. At 

least 40 epochs are required to obtain the accuracy exceeding 
90% 

 

Fig. 6.  Values of loss function while training and testing the model. It can 
be observed that almost 50 epochs are required to achieve the 
acceptable error level 

The confusion matrix, depicted in Fig. 7, presents the classes 
that were misclassified. As it can be seen, two types of RP dis-
ease are confused, as well as the RP cases with healthy cases. 
The level of misclassification is very small, up to 5.14%. This 

matrix also is also suitable for the neural network. To ensure the 
accuracy of the developed model, the Leave-One-Out Cross-
Validation (LOOCV) was performed. Although this procedure is 
computationally intensive, it provides reliable and unbiased in-
sights into the model’s performance. By employing LOOCV, the 
root mean squared error (RMSE) for n tests was calculated. The 
obtained results for LOOCV were as follows: RMSE: 5.83% and 

SD 3.78%. 

Tab. 6.  F1 score results for healthy, RP and CORD cases obtained using 
Convolutional GRU U-NET 

Class Mean (%) Max (%) Min (%) SD (%) 

Healthy 95.63 98.36 92.10 3.65 

CORD 96.94 98.76 93.99 3.35 

RP 94.11 98.02 89.82 3.11 

 
Fig. 7.   Confusion matrix for three classes: healthy, CORD and RP 

cases. It can be seen that the proposed classifier has a little 
problem in distinguishing between healthy cases and RP, and 
between RP and CORD. CORD is classified correctly in many 
cases.  

5. DISCUSSION 

AI has gained a lot of interest recently, achieving success in 
various fields of study. In the medical field, many neural network 
models have been applied for solving challenging tasks concern-
ing retinal diseases [7, 8, 10, 14, 20, 28, 35]. The accuracies 
depended on various classifiers and datasets consisting of differ-
ent types of images. 

In this study, the Convolutional GRU U-NET model was pro-
posed for the classification of rare eye diseases of rod-dominant 
(classical RP) and cone-dominant CORD. These two groups were 
distinguished from healthy cases. A set of experiments was per-
formed, which yielded satisfactory results, exceeding an accuracy 
of 90%, reaching up to 97.90%. These results of both the pro-
posed model and individual classes confirm that the answer for 
RQ1 is positive. 

The obtained performance results of the proposed the Convo-
lutional GRU U-Net model for RP disorders were compared with 
the similar outcomes for various eye disease classifications using 
various networks. In Tab. 7, seven studies were gathered, includ-
ing RP issues, that used different types of images, datasets and 
neural approaches. Various types of eye diseases were analysed. 
The highest accuracy was achieved by MobileNetV2, ImageNet, 
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InceptionV3 and AlexNet classifiers, while the lowest was 
achieved by a deep learning approach consisting of DenseNet, 
Recurrent Neural Network and Fully Connected layer. The accu-
racy results, obtained in this research, is at the top of the other 
accuracy values. This indicates that the proposed tool is adequate 
for the classification of RP disorders. Moreover, based on the 
state-of-the-art, it can be easily seen that this study made the first 
attempt to classify RP utilising the proposed neural network.  

Analysing the results gathered in Tabs. 2–6, it can be indicat-
ed that the proposed classifier can recognise two types of retina 
dystrophies. The answer for RQ2is definitely affirmative. The 
proposed Convolutional GRU U-NET model achieved satisfactory 
results by reaching only 40 epochs, which also gives a positive 
answer to RQ3. The obtained results clearly indicate that the 
hypothesis is true and that the proposed Convolutional GRU U-
Net can be successfully applied for rare eye diseases. 

Tab. 7.  Machine learning studies in retinitis pigmentosa (RP) recognition. OCT-optical coherence tomography, CORD-cone-rod dystrophy,  
UWFP- ultra-widefield pseudocolour, UWFAF-ultra widefield fundus autofluorescence 

Classifier Dataset Diseases Accuracy (%) References 

EfficientNet-B7,  
DenseNet,  

ResNet-101 
574 UWFI images 

Diabetic retinopathy, retinal vein occlusion, 
pathologic myopia, retinal detachment, RP, 
age-related macular degeneration, vitreous 

opacity and optic neuropathy 

96.44–99.32 [35] 

EfficientNet-B7 High-Resolution Fundus Diabetic retinopathy and RP 85.45 [10] 

Own system Fundus images, OCT RP 97.90 [7] 

Random Forests  
pixel-based, AdaBoost.M1 

pixel-based, Random 
Forests component-based, 

AdaBoost.M1  
component-based 

RIPS, OCT RP 98.99–99.45 [8] 

LCDNet Fundus camera imaging Retinal eye diseases 96.52–99.70 [20] 

MobileNetV2, ImageNet, 
InceptionV3 and AlexNet 

Kaggle 
Glaucoma, maculopathy, pathological 

myopia and RP 
100 [14] 

Deep learning approach 
consists of DenseNet, 

Recurrent Neural Network 
and Fully Connected layer 

OCT imaging 
Neovascular age-related macular  

degeneration 
72 [28] 

Convolutional GRU U-Net UWFP and UWFAF Healthy, CORD, RP 91.00–97.90 Own 

     
6. CONCLUSIONS AND FUTURE WORKS 

Nowadays, the machine learning models have been applied 
for medical purposes. In this study, a new model was proposed to 
automatically classify the RP based on Optos images. Three 
classes were distinguished: healthy, CORD and RP. The Convolu-
tional GRU U-Net was applied for this purpose. The verification of 
this tool proved that it is a very good solution to classify this rare 
disease. Each of the mean measures, namely accuracy, preci-
sion, sensitivity, specificity and F1 score, produced very high 
results, above 94%. The learning parameters showed that the 
dataset was enough to obtain high quality. Additionally, the pro-
posed neural tool was verified using the LOOCV. The obtained 
results proved the high performance of the developed model. 
Moreover, according to the authors’ knowledge, this is the first 
type of tool to classify the location of the RP in the retina. The 
obtained results proved the hypothesis. 

The developed Convolutional GRU U-Net shows great poten-
tial in practical software implementation to diagnose RP diseases 
as a supporting tool. It may help to decrease the time of diagno-
ses. It also may give the recommendations for further treatment. 
However, this model also has some limitations. It was trained and 
verified on dataset containing Optors images. Neither temporal 
nor spatial relationships were taken into consideration. The model 
requires a high hardware memory capacity. Future studied may 
extend the classes to perform a more detailed analysis of this rare 
disease. The proposed neural model may be used for the as-

sessment of the level of the RP. The experiments will be per-
formed focusing on improving the accuracy of the proposed  
model. 
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