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Abstract: The first part of this work is a brief (application-oriented) review of the different classes of multiphase flow models. The review 
starts with the most generic approaches and descends to the class of Homogeneous Relaxation Models (HRM) of two-phase flow.  
Subsequently, this work presents a detailed review of the developed relaxation equations describing nonequilibrium mass transfer in two-
phase flows. Some of the reviewed equations (in particular, the closure equations of HRMs) have quite simple mathematical structures  
but there are indications that they should be, in a specific way, more complex. Consequently, the main aim of this article is to bring  
attention to this problem and expose its nature and practical importance. The analyses conducted in this study reveal that relaxation  
closure equations formulated as advection equations may disrupt the phase space structure of the model, whereas equations formulated 
as phasic mass conservation do not pose such an issue. This distinction arises from the presence of a greater number of gradients  
in the conservation equations (a minimum of two, compared to potentially just one in an advection equation), rendering the conservation 
equations mathematically more complex. 

Key words: nonequilibrium mass transfer, relaxation equation, Homogeneous Relaxation Model, Delayed Equilibrium Model

1. INTRODUCTION 

Over the past few decades, significant strides have been 
made in advancing the mathematical and numerical modelling of 
phase transition flows. These advancements have substantially 
enhanced our ability to describe intricate phenomena, particularly 
nonequilibrium processes occurring within and between flowing 
phases. A prevalent method for characterizing nonequilibrium 
involves treating it as a superposition of distinct disequilibrium 
processes [1]. These processes are incorporated into the model 
as relaxation terms within the mass, momentum, and energy 
conservation laws or via dedicated closure relaxation equations. 

Each type of a multi-phase flow is a flow of separate fluids. 
There always are interfaces (or an interface) that distinguish one 
phase (fluid) from another [2]. Consequently, every multi-phase 
flow can be modelled using the Navier-Stokes equations providing 
that the boundary conditions for each of the phases and at the 
moving interfaces are specified (direct simulation) [3]. The compu-
tational cost of such an approach is enormous, and accounting for 
the nonequilibrium processes is problematic. Besides, practically 
important is the number and the surface area of these interfaces 
in the considered element of the flowing fluid. Taking the ratio of 
the mentioned quantities into consideration allows us to make 
appropriate simplifications concerning boundary conditions, fluid 
and flow variable averaging procedures and finally, the type and 
number of governing equations. Implementation of those simplifi-
cations in a mathematical form gives a flow model specialized for 
a given two-phase flow structure or range of structures. In this 
way a variety of specialized models were developed. One of the 

most generic of them is the two-fluid model in which a system of 
conservation equations for mass, momentum, and energy is 
solved for each phase/fluid [3]. As a consequence of the space 
and/or time averaging of the phases' properties, the detailed 
structure of the interphase is lost. However, this six-equation 
model can account for the difference in pressures, temperatures, 
and velocities of the phases [4]. Moreover, source terms or clo-
sure equations describing interphase mass, momentum, and 
energy transfer can account for the nonequilibrium effects [4]. 

The other broad application range model is a seven-equation 
two-phase flow model of Baer and Nunziato (BN) [5] that can 
account for velocity, pressure, and temperature disequilibrium 
between the phases. Originally, the BN model was developed to 
describe a deflagration-to-detonation transition in granular explo-
sive materials (thus, it is a two-phase solid-gas flow model). How-
ever, after certain modifications, it turned out to be capable of 
describing multiphase flows with ongoing phase transitions ac-
companied by various non-equilibrium effects [6].  

The following multiphase and multidimensional version of the 
BN model is possibly the most generic:   

𝜕(𝛼𝑘𝜌𝑘)

𝜕𝑡
+ ∇(𝛼𝑘𝜌𝑘𝑢𝑘) = 𝐶𝑘, (1) 

∂(α𝑘ρ𝑘𝑢𝑘)

∂𝑡
+ ∇(α𝑘ρ𝑘𝑢𝑘 ⊗ 𝑢𝑘 + α𝑘𝑝𝑘𝐼 − α𝑘𝜏𝑘) = 𝑝𝑘∗∇α𝑘 +

𝑀𝑘 − 𝜏 𝐼∇α𝑘 + 𝛼𝑘𝜌𝑘g𝑘 , (2) 

𝜕(𝛼𝑘𝜌𝑘𝐸𝑘)

𝜕𝑡
+ ∇[𝛼𝑘(𝜌𝑘𝐸𝑘 + 𝑝𝑘)𝑢𝑘 − 𝑢𝑘𝛼𝑘𝜏𝑘] =

𝑢𝐼𝑝𝑘∗∇α𝑘 − 𝑝𝐼𝐹𝑘 + 𝜖𝑘 − 𝑢𝐼(𝜏 𝐼∇𝛼𝑘) + 𝑞𝑘 + 𝐽𝑘 +

𝛼𝑘𝜌𝑘(𝑢𝑘g𝑘), (3) 
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𝜕𝜌𝑘

𝜕𝑡
+ ∇(𝜌𝑘𝑢𝑘) = −

𝜌𝑘

𝛼𝑘
𝐹𝑘, (4) 

where: α - the volume fraction, ϵ - the interphase energy transfer 
rate per infinitesimal volume (piv) [W/m3], ρ - the density [kg/m3], 

C – the interphase mass transfer rate piv [kg/(s m3)], E - the 
specific total energy [J/kg] (the potential energy is commonly 
neglected), F - the compaction rate (mimics the effects of micro-

structural forces) [1/s] [7], g - the acceleration vector caused by 

the net external body force [m/s2], J - the external heat transfer 
rate piv [W/m3], M – vector of the interphase momentum transfer 

rate piv [N/m3], p - the pressure [Pa], q – the conduction heat 

transfer rate piv [W/m3], t – time [s], u = [ux, uy, uz]
T

 - the 

velocity vector [m/s], τ- the viscous stress tensor (frequently 

calculated by the Newtonian approximation [4]) [Pa], I- the identity 

tensor, k - subscript indicating the phase (k = 1, … , n), k* - 
subscript indicating the conjugate phase of the phase k [6], n - 

number of phases, I – subscript denoting interface quantity. 
The blue terms in Eq. (1-4) are viscosity, heat conduction, and 

external energy source terms, respectively, recently added to the 
BN model by Zhang et al. [6]. However, the interphase mass 

transfer Ck was omitted in [6], consequently, the model can accu-
rately describe flows without interphase mass exchange. 

In the presented model formulation (Eq. 1-4) this limitation 
was removed (by addition of the first green term).  Also, the terms 
for including external body forces effects (two last green terms) 
were added. 

The presented partial differential equations express the con-
servation of mass (Eq. 1), momentum (Eq. 2), and energy (Eq. 3) 

and they must be formulated for each of n phases, while the 
compaction dynamics equation (Eq. 4) is required only for (n −
1) phases [7]. 

Taking n = 2 and replacing the green and blue terms with ze-
ros yields the multidimensional version of the original (seven-
equations) BN model [7] wherein for k=1, k*=2 (or for k=2, k*=1), 
moreover: 

𝐶2 = −𝐶1,    𝜖2 = −𝜖1,    𝑀2 = −𝑀1,   𝐹2 = −𝐹1.   (5) 

Let us further assume that the mixture is a vapor-liquid system 
and admit k=1 for the vapor and k=2 for the liquid, and introduce 
𝐶 = 𝐶1 = |𝐶2|, and  𝐹 = 𝐹1 = |𝐹2|, then the previously de-
scribed compaction rate and the source terms can be expressed 
as follows [8]: 

𝐹 = 𝑟𝑝(𝑝2 − 𝑝1), (6) 

𝑀 = 𝐶𝑢1 + 𝑟𝑢(𝑢1 − 𝑢2), (7) 

𝜖 = 𝐶 (𝑒2 +
1

2
𝑢2

2) + 𝑟𝑢𝑢2(𝑢1 − 𝑢2)

+𝑟𝑇(𝑇1 − 𝑇2),

  (8) 

where: T denotes absolute temperature [K] and e stends for 
specific internal energy [J/kg].  More on the physical meaning of 
those source terms can be found in [8]. For the purpose of this 
work, it is only important to understand that those source terms 
characterize phase interactions and that some of their compo-
nents (relaxation terms) decide how fast the difference in a given 
phasic variable decreases (relaxes) with time. In this meaning, 

one can say that the drag source ru(u1 − u2) present in the 
momentum (Eq. 2) and energy (Eq. 3) equations, equilibrates 

velocities. The heat transfer term rT(T1 − T2) in the energy 
equations (Eq. 3) equilibrates temperatures. Finally, the whole 
compaction dynamics equation (Eq. 4, with the relaxation term F)  

is a relaxation law that drives the phases toward pressure equilib-
rium. 

The relaxation rates rp, ru, rT are all positive and the higher 

they are the faster a given variable equilibrates. 
In contrast to the two-fluid model (dedicated mainly to fully 

separated flows), BN-type models assume that the flowing mixture 
is homogeneous enough to be treated as a continuum with phe-
nomenologically appropriate parameters such as density, velocity, 
temperature, or sound speed. 

1.1. Hierarchy of the BN-type relaxation models 

A narrower-scope model can be derived from BN model  
(Eq. 1-4) by introducing infinite-rate relaxation for a selected 
property. In such a way a hierarchy of relaxation models can be 
established [9]. 

Applying an infinite relaxation rate of velocity reduces the 
model to the six-equation single-velocity model [9] that can ac-
count for pressure, temperature, and chemical potential disequilib-
rium between the phases. Thus, the resulting model is simpler 
(easier to be solved [9]) but unable to fully describe a possible 
mechanical disequilibrium in the flow (both phases still could have 
different pressures but must have the same velocity). This kind of 
model can accurately describe cavitating, flashing and condensing 
flows providing that one of the phases is quite uniformly distribut-
ed in the other phases (homogeneous flow). Moreover, it can be 
used for modelling of the interfacial flows as the same type equa-
tions apply to the direct numerical simulation of boiling flows at 
sub-bubble scale. 

Subsequently, assuming instantaneous pressure relaxation 
the five-equation mechanical equilibrium model (single-velocity 
and single-pressure) is obtained [9]. The formulation of a such 
model was done by Kapila et al. (2001) [8] and then it was adjust-
ed for cavitating flows by Saurel et al. (2008) [10] and Le Martelot 
et al. (2013) [11]. This class of models accurately describes flash-
ing and condensing homogeneous flows. It can be used for pre-
dicting the cavitating flows in cases when the pressure difference 
between phases does not play a significant role [11]. 

In the limit of instantaneous mechanical and thermal relaxa-
tion we obtain a four-equation, single-velocity, single-pressure, 
and single-temperature two-phase flow model.  

The first of such models relayed on the relaxation of the 
chemical potential [12]. The later model proposed simultaneous 
relaxation of three different fluid properties (including the Gibbs 
free energy) [13]. However, in the subsequent models [14], the 
interphase mass transfer is driven by a difference in only the 
Gibbs free energy of the phases. In [15], a fast solver for such 
models is proposed. 

Considering the equality of pressures and temperatures of the 
phases, a non-zero difference in Gibbs free energy is possible 
due to the application of the van der Waals Equation of State 
(EOS) for each phase [16]. However, a physically consistent EOS 
leads to the same Gibbs free energy for vapor and liquid at the 
same temperature and pressure. In turn, an assumption that both 
phases are in metastable states introduces inequality of at least 
one of the mentioned intensive properties. For those reasons, this 
class of models can be treated as physically inconsistent. 

Finally, in the limit of full instantaneous thermodynamic equi-
librium, the three-equation Homogeneous Equilibrium Model 
(HEM) [17] is obtained. The HEM can accurately describe homo-
geneous two-phase flows without strong pressure changes and 
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rater with subsonic velocities as it does not account for any of the 
nonequilibrium effects, and it underestimates the sound speed for 
flows characterized by low vapor mass fraction. 

There is a four-equation (single-velocity, single-pressure) two-
phase flow model that is often treated as a BN-type model how-
ever it cannot be obtained as the above-mentioned models. It is a 
Homogeneous Relaxation Model (HRM) [18] in which the inter-
phase mass transfer is driven by a thermal disequilibrium between 
the metastable liquid and the saturated vapor. An evolution of 
vapor mass fraction in the HRM is described by a rate equation 
[19]. Introducing of a third phase into the HRM leads to the De-
layed Equilibrium Model (DEM). This additional phase is a satu-

rated liquid that has the same pressure p as the remaining phas-

es and the same temperature as the saturated vapour Tsat(p). 
The temperature of the metastable liquid T is higher than the 
temperature of the saturated phases. 

1.2. General remarks and historical background on 
modelling of the relaxation phenomenon in fluids 

Relaxation is a process of return of a disturbed system to 
equilibrium. Relaxation time θ characterizes the speed of the 
return. If the state of the system is characterized by the property 

ψ, then its relaxation changes are described as follows [20]: 

𝐷𝜓

𝐷𝑡
=

𝜕𝜓

𝜕𝑡
+ 𝑢∇𝜓 = −

𝜓−𝜓𝑒𝑞

𝜃
,  (9) 

where ψeq is the value of the property ψ at equilibrium. The 

physical sense of the relaxation time θ is such that after it has 
elapsed the deviation from the equilibrium state (ψ − ψeq) de-

creases e times (e - the base of the natural logarithm). 
The idea of relaxation time has been successfully used al-

ready by Einstein (1920) [21], to analyse sound propagation in 
partially dissociated gases, and Mandelshtam and Leontovich 
(1937) [22], in the analysis of sound absorption in liquids. Never-
theless, probably the first application in the field of two-phase 
flows is attributed to Bauer (1976) [23], who replaced ψ in Eq. (9) 

with the vapour mass fraction x to describe nonequilibrium mass 
transfer between phases of a gas-liquid mixture. Then, the con-
cept presented by Eq. (9) was adopted in the seven-equation two-
phase flow model of Baer and Nunziato (1986) [5]. However, it 
was not until 1990 that Bilicki et al. [18] analysed this equation in 
the background of the linear theory of irreversible processes 
(stating that it is fully consistent with the mentioned theory). They 
also showed that the theoretical expression for the relaxation time 
depends on the second-order derivative of specific Helmholtz free 

energy a. This suggests that in the concerned modification of Eq. 
(9), implicitly, apart from ∇x, a second gradient ∇a is involved. 
Also, the same article shows how to attach the concerned relaxa-
tion equation to the system of the conservation equations (of 
mass, momentum and energy) to formulate the HRM. Subse-
quently, the authors described the difference between the HEM 
and HRM, focusing on a study of dispersion, characteristics, 
choking, and shock waves. However, no closure equation for the 

relaxation time θ was proposed; instead, several constant values 
for this parameter were assumed in the calculations. 

2. REVIEW OF NONEQUILIBRIUM MASS TRANSFER 
RELAXATION MODELLING FOR TWO-PHASE FLOWS 

This review is supposed to present selected available litera-
ture approaches that, according to the author’s knowledge, cover 
all developed consistent modelling techniques. 

To make this review more useful, it was decided to provide the 
numbers of equations and tables that describe the presented 
equations in the Original Article (OA). Those numbers are given in 
angle brackets. 

The equations, that can be found in the OA, generally differ 
visually from the presented versions since they have been trans-
formed to match the form given by Eq. (11) or Eq. (12), and the 
nomenclature of this work. 

2.1. Simple thermodynamic relations 

Only equations with one relaxation source term are classified 
into this category. These relations are most often encountered in 
BN-type models in the form of the phasic mass conservation 
equation (Eq. 1). Otherwise, they have the form of an advection 
equation: 
 

𝜕ℶ𝑘

𝜕𝑡
+ 𝑢𝑘∇ℶ𝑘 = 𝐾𝑘 , (10) 

 

where ℶ𝑘 , in the case of the two-phase flow, is the volume frac-

tion α, the vapour mass fraction 𝑥 or the mass fraction of the 

saturated phases 𝑦 (the saturation index). In all these cases: 
 

𝐾𝑘 = 𝑟(𝜓𝑘 − 𝜓𝑘∗), (11) 
 

or 

 

𝐾𝑘 = 𝑟(𝜓𝑘 − 𝜓𝑒𝑞), (12) 
 

where ψk denotes a thermodynamic property of the k phase, 

ψeq denotes a value of that property at equilibrium (for ψk =

y,  ψeq = yeq = 1), and r is a relaxation rate. The relaxation 

rate is inversely proportional to the relaxation time θ of the con-

sidered thermodynamic property ψ. 
The above description is a generalisation (of the various ap-

proaches found in the literature – Tab.1 and Tab. 2) made to 
emphasise the fundamental concept: the difference of a certain 
property between phases (or its value at the equilibrium state) is 
the driving force of the mass exchange process. However, it has 
the following limitations: It can only be used for properties that, at 
equilibrium, have the same value in all phases. Eq. (11) has no 
physical meaning for properties describing mixture composition 
(such as the volume fraction and the mass fraction). 

A drawback of the considered approaches is predicting zero 

interphase mass transfer when ψk = ψk∗ ≠ ψeq (or, in other 

words, when ψk = ψk∗ and r ≠ ±∞). Thus, the model formula-
tion in which such a situation is possible (e.g., a model with con-
stant r) cannot describe the equilibrium mass transfer. 
      Tab. 1 summarises the approaches described by Eqs. (10 – 
12). Tab. 2 is a synopsis of the approaches described by Eqs. 
(1,11,12) for which C = K. The last column of each of these 
tables shows the reference index of the article from which the 
given equation comes (Original Article Index, OAI). This column 
also exhibits the fluid type for which the equation was developed. 
If the fluid is not specified, the equation is supposed to hold for 
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every fluid. Some approaches presented in Tab. 2 are based on 
the conservation equation of the phasic mass (Eq. 1) in which the 
left-hand side uses x instead of α. In this case, (x) is added just 
after the model type description. 

Tab. 1.  Review of the selected simple thermodynamic relations for 
nonequilibrium mass transfer modelling with a form given  
by Eq. (10). Denotations and remarks: T - in the description  
of the model type, indicates that the model is transient; a lack  
of T implies a steady-state flow model, SI - the specific exchange 

surface; c- the acoustic speed; φ = [psat(T) − p][pc −
psat(T)]−1; psat(T) – the saturation pressure at a temperature 
of  the metastable liquid T; pc – the fluid's critical pressure;  

A, P  – the flow channel cross-section area and its perimeter, 

respectively; (2y − y2)eq = 1; uL0 - the liquid superficial 

velocity; ε = 75.28(Adiv − Aconv)(Aref − Aconv)−1; 
Adiv, Aconv – the convergence and divergence rates of the 

converging-diverging nozzle, respectively; Aref – referential 

nozzle divergence rate 

 

Form of 𝑲 

_____ 
Model type 

 

ℶ, 𝝍 

 

Relaxation rate 𝒓 

OAI 
_____ 
Fluid 

 

Eq. (11) 
< Eq. 3.1a 

> 
_____ 

3D T BN 

 

α, p 

𝑆𝐼

𝑐1𝜌1 + 𝑐2𝜌2
 

 
< Eq. 3.1h > 

 

[10] 

Eq. (11) 
< Eq. 6a / 
Eq. 1a > 
_____ 

3D T BN 

 

α, p 

 

Constant / Unspecified 
 

< Eq. 2a >  /    --- 

 

[9/11] 

 

Eq. (11) 
< Eq. 1a > 

_____ 
3D T BN 

 

α, 𝜌𝑐2 

∇𝑢

𝜌1𝑐1
2α1

−1 + 𝜌2𝑐2
2α2

−1 
 

 
< Eq. 1a > 

 

[11] 

Eq. (12). 
< Eq. 3 > 

_____ 
1D T HRM 

𝑥, 𝑥 
[3.84 ∙ 10−7 ∙ α1

−0.5
𝜑−1.8]

−1
 

 
< Eq. 11 > 

[19] 
____ 

H2O 

Eq. (12) 
< Eq. 4 > 

_____ 
1D T HRM 

𝑥, 𝑥 
[2.14 ∙ 10−7 ∙ α1

−0.5
𝜑−1.8]

−1
 

 

< Eq. 21 > 

[24] 
____ 

CO2 

Eq. (12) 
< Eq. 9 > 

_____ 
3D HRM 

𝑥, 𝑥 
[𝜃(𝑝) ∙ α1

𝑎(𝑝)𝜑𝑏(𝑝)]
−1

 

 
< Eq. 12, Tab. 3 > 

[25] 
____ 
CO2 

Eq. (12) 
< Eq. 25 > 

_____ 
1D DEM 

𝑦, 𝑦 

−0.02
𝑃

𝐴
𝜑0.25 

 

< Eq.  25 > 

[26] 
____ 

H2O 

Eq. (12) 
< Eq. 8 > 

_____ 
1D DEM 

 

𝑦,  
2𝑦
− 𝑦2 

−0.01
𝑃

𝐴
(

|𝑢|

|𝑢𝐿0|
)

0.1

𝜑0.25 

 

< Eq.  8 > 

[27] 
____ 

H2O 

Eq. (12) 
< Eq. 59, 
Eq. 60 >  
_____ 

1D T DEM 

𝑦, 𝑦 
−(0.0084

𝑃

𝐴
+ 0.6337)𝜑0.228 

< Eq. 59, Eq. 60 > 

[28] 
____ 

H2O 

Eq. (12) 
< Eq. 24, 
Eq. 25 > 
_____ 

1D DEM 

𝑦, 𝑦 

−(38 + 1.3 ∙ 10−39𝑒𝜀)𝜑−0.22 

 
< Eq. 24, Eq. 25 > 

[29] 
____ 

CO2 

Eq. (12) 
< Eq. 2 > 

_____ 
1D DEM 

𝑦, 𝑦 

−(0.1086
𝑃

𝐴
+ 0.5958)𝜑0.228 

 

< Eq. 2, Tab. 8 > 

[30] 

____ 

C2H2F

4 

Tab. 2.  Review of the selected simple thermodynamic relations for 
nonequilibrium mass transfer modelling with a form given  
by Eq. (1). Denotations and remarks: μ – the chemical potential;  

g – the specific Gibbs free energy; h - the specific enthalpy;  

ML – subscript denoting the metastable liquid; SL - subscript 
denoting the saturated vapor; SL – subscript denoting the 
saturated liquid;  (hMLhSG)eq = hSLhSG; ϰ - isentropic 

exponent of the vapor 

Form of 𝐶 
_____ 

Model type 
𝜓 

 

Relaxation rate 𝑟 

OAI 
_____ 
Fluid 

Eq. (11) 
< Eq. 3.1.1 / 

Eq. 1b > 
_____ 

1D/3D T BN 

𝜇 

 

Constant / Unspecified 
 

< Eq. 2c>  /    --- 

[9/12] 

Eq. (11) 
< Eq. 3, Eq. 

47a /  
Eq. 3.1 > 

_____ 
1D,3D T BN 

(x) 

𝑔 

𝜌 𝑟𝑔(𝑆𝐼 , 𝑝, 𝑇) 

 
< Eq. 3, Eq. 47a / Eq. 3.1 > 

[14/15] 

Eq. (12) 
< Eq. 4a, Eq. 

14 > 
_____ 

1D T HRM (x) 

ℎ𝑀𝐿ℎ𝑆𝐺 

𝜌2(𝑥 − 𝑥2)(𝜘 − 1)

𝜘 𝑝 (ℎ𝑆𝐿−ℎ𝑆𝐺) 𝜃
 

 
< Eq. 4a, Eq. 14 > 

[31] 
____ 

H2O 

Eq. (12) 
< Eq. 6 > 

_____ 
1D  HRM (x) 

𝑥 

𝜌

2.15 ∙ 10−7 ∙ α1
−0.54

𝜑−1.76
 

 
< Eq. 10 > 

[32] 
____ 

CO2 

2.2. Empirical phenomenological relations 

All equations described by the fourth and next rows of Tab. 1 
and the equations from the two last rows of Tab. 2 can be 
classified as empirical phenomenological relations since their 
relaxation rates have been developed for specific fluids by 
adjusting the presented equations' constants so that the modelling 
would result with possibly best approximation of the experimental 
data. 

2.3. More advanced thermodynamic approaches  

This category gathers equations based on the idea presented 
in the previous section that have more than one relaxation source 
term. Additionally, approaches using more than one equation 
(from the set of all equations constituting the model) to describe 
non-equilibrium mass transport are also presented here. A 
notation that in each relaxation term, the difference in the property 
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that is relaxed stands in the square brackets was used. Therefore, 
everything outside of these brackets, in a given relaxation term, is 
the relaxation rate of the considered property.  

In [17], <Eq. 3.1.1>, an approach based on a 1D version of 
Eq. (1) is presented. In this equation the right-hand side is given in 
the following form <Eq. 3.1.8b>: 

𝐶 = 𝑟[𝑠1 − 𝑠2] + 𝑟 [
ℎ2

𝑇2
−

ℎ1

𝑇1
] + 𝑟 [

𝐿

𝑇1
−

𝐿

𝑇2
],             (13) 

where 𝑠 is the specific entropy, and 𝐿 = ℎ𝑆𝐺 − ℎ𝑆𝐿 is the specif-
ic latent heat. In this approach, there are three relaxation source 

terms that have a common relaxation rate 𝑟 being a positive 
constant. 

Another 1D equation is proposed in [33] in the following form 
<Eq. 43c>: 

𝜕𝜌2

𝜕𝑡
+

𝜕(𝜌2𝑢)

𝜕𝑥
= 𝑟[𝑓(𝜌2) − 𝑓(𝜌1)] + 𝑟𝜇(𝜌2)[𝜌1 − 𝜌2], (14) 

 

where f is the Helmholtz free energy per unit volume. The relaxa-
tion rate in the first relaxation source term is r = γ−1(ρ −
ρ1)(ρ − ρ2), while for the second relaxation source term it is 

rμ(ρ2). Finally, γ is a relaxation parameter that determines the 
rate at which the chemical potentials and pressures of the two 
phases reach equilibrium. 

The approach presented in [13], among the five model equa-
tions, contains three equations responsible for non-equilibrium 
mass transfer modelling. The first of them <Eq. 1a > has a form of 

the volume fraction advection equation (Eq. 10, ℶ = α). Thus, it is 
necessary to present only its right-hand side: 

𝐾 = ∇𝒖𝜔[𝜌2𝑐2
2 − 𝜌1𝑐1

2] + 𝜌𝑣 (
𝑐2

2

𝛼2
+

𝑐1
2

𝛼1
) 𝜔[𝑔2 − 𝑔1] +

𝐻 (
Г2

𝛼2
+

Г1

𝛼1
) 𝜔[𝑇2 − 𝑇1],            (15) 

where 𝜔 = (𝜌1𝑐1
2α1

−1 + 𝜌2𝑐2
2α2

−1)−1, 𝑣 and 𝐻 are relaxa-
tion coefficients, Г is the Grüneisen coefficient.  
The second and third equations <Eq. 1b, Eq. 1c> are the phasic 
mass conservation equation (Eq. 1). Thus, it is necessary to 
present only their right-hand sides: 

𝐶 = ±𝜌𝑣[𝑔2 − 𝑔1] .          (16) 

Another approach using three equations (out of the six model 
equations) for non-equilibrium mass transfer modelling is present-
ed in [34] and extended in [35]. The first equation is the volume 
fraction advection equation <Eq. 63a>, whose right-hand side 
reads: 

𝐾 = 𝜁𝑝[𝑝1 − 𝑝2] +
𝜁𝑇ℏ𝐴int 

𝑉
[𝑇1 − 𝑇2] −

𝜁𝐺𝐴int 

𝑉
[𝑔1 − 𝑔2],  (17) 

where ℏ is the heat transfer coefficient, Aint  is the interface area 
(the area of the interphase heat transfer), V is the volume of the 

considered mixture element, ζp, ζT, ζG are relaxation coefficients. 

The second and third equations <Eq. 63b, Eq. 63c> are the pha-
sic mass conservation equation. Thus, it is necessary to present 
only their right-hand sides: 

𝐶 = ±
𝐴int 

𝑉
[𝑔1 − 𝑔2].          (18) 

It is worth noting that Eqs. (15-18) contain relaxation terms 
based on the difference between phasic specific Gibbs free ener-
gy. 

2.4. Relations based on the statistical phase change 
analysis 

The fundamental works in this domain determine the net rate 
of molecular interfacial transport j that can be a basis for the 

calculation of the interphase mass transfer rate C. However, 

translating the equations for j, into those describing C, would 
significantly complicate them and impede recognition of the re-
laxed properties and the relaxation rates. Thus, it was decided to 
avoid that and to introduce only the nomenclature corrections. 

In each equation (presented in this and the next section), the 
difference in the property that is relaxed is enclosed in curly 
brackets. Therefore, everything outside these brackets is the 
relaxation rate of the considered property. 

The net rate of molecular Interfacial transport of gas into the 
liquid phase is derived in [36], <Eq. 33>, in the following form: 
 

𝑗 = −
2 𝐴𝑠

𝐶𝑒𝑞

𝑝1′

√2𝜋𝓂1𝑘𝑇2
{𝐶 − 𝐶𝑒𝑞},              (19) 

 

where As is the fraction of the area available for absorbing gas 

molecules when the liquid is in equilibrium with the gas, p1′ is the 

partial pressure of the gas above the liquid, 𝓂1 is the molar mass 
of the absorbed gas, k is the Boltzmann constant, C is the con-
centration of the gas in the liquid (number of the molecules per 
unit volume). 

In [37] net rate of molecular interfacial transport <Eq. 57> is 
described as dependent on difference in phasic chemical poten-
tials: 
 

𝑗 =
2К

𝑘𝑇
{𝜇1 − 𝜇2},           (20) 

 

where К is the equilibrium molecular exchange rate between 
phases, T is the two-phase mixture temperature. 

Quite complex relation for net rate of molecular interfacial 
transport  is presented  in [38], <Eq. 42, Eq. 45>: 

 

𝑗 =
𝜂 𝑝𝑠𝑎𝑡(𝑇2)

√2𝜋𝓂𝑘𝑇2
〈𝑒𝑥𝑝 [

𝜇2

𝑇2
−

𝜇1

𝑇1
+ ℎ1 (

1

𝑇1
−

1

𝑇2
)] − 𝑒𝑥𝑝 [−

𝜇2

𝑇2
+

𝜇1

𝑇1
− ℎ1 (

1

𝑇1
−

1

𝑇2
)]〉,          (21) 

 

where 𝜂 = exp (
1

𝜌2𝑘𝑇2
[𝑝

𝑒𝑞
− 𝑝

𝑠𝑎𝑡
(𝑇2)]), 𝓂 is the molar mass.    

However, it can be recognize as a relaxation equation only when 
transformed to the following form: 
 

 𝑗 =
𝜂 𝑝𝑠𝑎𝑡(𝑇2)

√2𝜋𝓂𝑘𝑇2

1

ῥ
{ῥ2−1},           (22) 

 

where 
 

 ῥ = 𝑒𝑥𝑝 [
𝜇2

𝑇2
−

𝜇1

𝑇1
+ ℎ1 (

1

𝑇1
−

1

𝑇2
)]. 

 

In [39] an analysis of evaporation through the classical kinetic 
theory was conducted. The authors  developed  relation that 
reads:  

 

𝑗 =
σ

1−0.5σ
(2𝜋𝓂𝑘𝑇2)−0.5 {

𝑝𝑠𝑎𝑡(𝑇2)

√𝑇2
−

𝑝1

√𝑇1
},        (23) 

 

where σ  is an empirical coefficient called the condensation coef-
ficient. 
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2.5. Relations based on the nucleation theories and/or the 
kinetic theory of phase change 

The equations presented here can also be included in the 
previous section because the kinetic theory of phase change and 
nucleation theories are closely related to the statistical phase 
change analysis. However, the rule here is that if the OA specifies 

the interphase mass transfer rate C instead of the net rate of 
molecular interfacial transport j, it qualifies for this section. 

Of course, many equations for C derived within the theories 
considered here are not relaxation equations. Unfortunately, 
despite that some of them are used in the relaxation models. For 
example, in [40], an equation describing the evolution of the satu-

ration index y, which does not have the features of a relaxation 
equation was introduced into the DEM. Consequently, the ob-
tained model is not a relaxation model. 

In [41], <Eq. 10>, an approach based on the steady-state ver-
sion of Eq. (1) is presented (however, α is replaced by x). In this 
equation, the right-hand side is given in the following form, <Eq. 
12>: 

 

𝐶 = 𝑅𝑏𝑜𝑖𝑙 = ± [
𝜎̂

2−𝜎̂
] (

𝓂′

2𝜋𝐺𝑐𝑇sat 
)

1/2
{𝑝 − 𝑝sat },       (24) 

 

where σ̂ is the accommodation coefficient that represents the 
number of molecules passing during the phase change process (it 
is dependent on the flow conditions and the working fluid, thus, it 

needs to be adjusted according to the experimental data), Gc is 

the universal gas constant, 𝓂′  is the molecular mass. In this 
approach, C is called the boiling source term Rboil. 

The above approach is extended in [42] by enlarging the in-

terphase mass transfer rate C by the so-called cavitation source 
Rcav: 

 

𝐶 = 𝑅𝑏𝑜𝑖𝑙 + 𝑅𝑐𝑎𝑣 = 𝑅𝑏𝑜𝑖𝑙 ±
𝑐𝑐√𝐾𝑇

𝛿
𝜌1𝜌2(1 − 𝑥) (

2

3

𝑝sat −𝑝

𝜌2
)

0.5
,  (25) 

 

where cc is the cavitation constant, KT is the turbulence kinetic 
energy, δ is the surface tension. It can be seen that since the last 

exponent on the right-hand side differs from one, Rcav is not 
strictly appropriate relaxation term. 

3. TOPOLOGICAL ASPECTS OF RELAXATION MODELS 

The topological analysis is crucial for understanding the ele-
mentary features of the considered models and applying the 
proper numerical procedures for determining the practically ac-
ceptable solutions. This analysis focuses on the steady-state 
version of the two-phase flow model and uses the theory of dy-
namical systems. It was conducted and described, in a rather 
detailed way, in [43] and (more recently) in [44]. Thus, solely 
elements of the theory that are critical for further investigation of 
the relaxation equations describing nonequilibrium interphase 
mass transfer are presented.  

In case of doubts regarding the analysis, the reader is guided 
to the above-mentioned articles or the author’s previous publica-
tions: A detailed description of the physical sense and mathemati-
cal formulation of relaxation models, as well as the Homogeneous 
Equilibrium Model is presented in [45], while procedures for de-
termining the solutions are presented in [46]. Finally, practical 
applications of this two can be found in [47]. 

3.1. General form of the equation system  
and its transformations 

Practically all known one-dimensional models of a steady-
state flow can be presented in a form of the following nonlinear 
ordinary first order differential equation system [43]: 

 

A(σ)
𝑑σ

𝑑𝑧
= b(𝑧, σ),           (26) 

 

       The size and elements of the matrix A and the vector σ de-

pend on the model type. The vector σ consists of n quantities 
describing a thermodynamic state of the fluid, and if necessary, 
the velocity of the fluid. The elements of the matrix A depend only 

on σ′s components, and b’s elements additionally depend on the 

spatial coordinate z (specifying distance along the flow channel 
axis). The set of governing equations (26) supplied with the vector 

σB=[σ1,B, σ2,B, . . . , σn,B] (describing the flow inlet conditions, the 

inlet is located at zB) creates an initial-value problem. A solution 

to the problem is a trajectory σ(z) in n + 1 dimensional phase 
space Ω, which conventionally can be obtained by a numerical 
integration of the equation system (26). 

The system of equations (26) can be solved with respect to 
the derivatives of σ’s components by using Cramer‘s rule: 

 

𝑑𝜎𝑖

𝑑𝑧
=

𝑁𝑖(𝑧,σ)

𝐷(σ)
 ,       𝑖 = 1,2, … , 𝑛 ,          (27) 

 

where, 𝐷 denotes the determinant of A, and 𝑁𝑖 are determinants, 
each of which is created by replacing the 𝑖-th column of A with b. 
The most practically useful form of the equation system is ob-

tained by application of the dummy parameter 𝑡 [43]: 
 

𝑑𝑧

𝑑𝑡
= 𝐷,

𝑑σ𝑖

𝑑𝑡
= 𝑁𝑖.          (28) 

 

        It is worth to notice that in the above autonomous form the 

independent variable is not 𝑧 but the dummy parameter 𝑡. 

3.2. Topological Structure of The Phase Space 

Each possible state of a system is represented as a point in 
the phase space Ω. Thus, for example, if in the mathematical 

model n=3 then σ consists of 3 components, say: the pressure p, 
the enthalpy h, the velocity w. Consequently, the state of the fluid 
and flow in any cross-section of the nozzle is determined by three 

values of those parameters and value of the spatial coordinate z. 
Thus, the phase space of this example is 4-dimensional. 

However, in general, the phase space is n + 1 dimensional, 
thus for simplicity, the most interesting features of its structure are 
presented in the form of projections on a pressure p - spatial 

coordinate z plane depicted in Fig. 1. Accordingly, the black, 

green, and red curves present projections of n + 1 dimensional 
trajectories on p − z plane. Each solid line is a projection of a 
solution to the initial-value problem mentioned in the previous 
subsection. The inlet conditions related to those flows differ only in 
the velocities. Consequently, all trajectories related to the solid 

lines start form the same values of the inlet pressure pB, the inlet 

density ρB, and the inlet specific enthalpy hB but they are related 
to different mass flow rates. 

It is necessary to distinguish three classes of points in the 
phase space Ω: 

 Regular points at which 𝐷 ≠ 0. At each of these points the 
systems (26), (27) and (28) are equivalent. Any numerical 
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forward-marching integration of system (26) that starts from 

the inlet conditions 𝐵=[z𝐵 , σ1,𝐵 , σ2,𝐵 , . . . , σ𝑛,𝐵] and passes 

towards the channel outlet, only through the regular points, 
gives a proper approximation to a physically acceptable ana-
lytic solution. The system (26) satisfies the existence and 
uniqueness requirements (only one trajectory passes through 
any regular point). A trajectory that consists of only regular 
points is fully subsonic or fully supersonic. Fig. 1 shows pro-
jections of three subsonic trajectories - the green curves that 
are called Possible Flow (PF) trajectories. 

 Turning points at which 𝐷 = 0 and and all 𝑁𝑖 ≠ 0 [18]. At 
those points the systems (26) and (27) are not equivalent. 
Numerical integration of (26), in the vicinity of the turning 
point, produces a systematically accumulating numerical error. 
As a result, the integration could become impossible even be-

fore reaching the turning point. This is because | 𝑑𝜎𝑖 𝑑𝑧|⁄  → 

∞ while 𝐷 → 0. However, the autonomous system (28) satis-
fies the existence and uniqueness requirements at those 
points. Hence, during its numerical integration, one can simply 
pass through a turning point and can obtain a proper approxi-
mation of a trajectory that, at the turning point, changes direc-

tion along the 𝑧-axis (the red curves in Fig. 1). The one-
dimensional steady-state flow cannot change direction in the 
channel. Therefore, those trajectories are physically accepta-

ble only if they pass through a point of inlet conditions 𝐵 and 
the turning point is located at the end of the channel. Conse-
quently, the solutions that pass through turning points local-
ised inside of the channel are called Impossible Flow (IF) tra-
jectories. 

 
Fig. 1. Illustration of the structure of the considered phase space 

In work [18] was shown that D = 0 occurring at the channel 
end is also a choking criterion (or critical flow condition) since 
D = 0 means that at this point the fluid’s velocity reaches the 
local speed of sound, and as a result, the mass flow rate and the 
subsonic part of the trajectory are unchangeable even despite 
possible pressure drop occurring beyond the channel exit. 

Fig. 1 shows projection of three IF trajectories (the red 
curves). They pass through the turning points F, G, H. Turning 

points determine the curve D = 0  (the projection of this curve is 
shown in Fig. 1 as the brown dashed line). 

 Singular points at which 𝐷 = 0 and all 𝑁𝑖 = 0. Here are 
considered only nondegenerate singular saddle points like S 
at which rank(A) = 𝑛 − 1 and through which exactly two 
trajectories pass. Namely, BSE1 and BSE2 in Fig. 1 (but only 
BSE1 is "really" a transonic trajectory since on BSE2 the veloc-
ity of the fluid reaches the speed of sound merely at point S to 
decrease just after it [18]). 

According to Eq. (28), dz = Ddt and dσi = Nidt. Therefore, 
at those points, finite changes Δz and Δσi calculated by the 
numerical methods are equal to 0 regardless of the integration 

step size Δt. It means that, the numerical algorithms cannot nei-
ther “start from” nor “pass through” this kind of points (they simply 
"get stuck" in these points - in the theory of differential equations, 
such points are called equilibrium points). Therefore, contrary to 
remaining trajectories, the transonic trajectory cannot be deter-
mined by a conventional numerical forward-marching integration 
(even of the system 28). 

In [18] it was shown that when D = 0 and an arbitrary 

Ni = 0 then all remaining Ns also vanish. 

3.3. The topological analysis of the nonequilibrium mass 
transfer modelling 

The review of the equations describing nonequilibrium inter-
phase mass transfer presented earlier revealed a high diversity of 
these equations. The equations differ in the method of derivation 
(the phenomenological approaches or the approaches rooted in 
theories that translate the microscopic behaviour of the fluid into 
its macroscopic properties), the type of quantity whose difference 
is relaxed, and the relaxation rates. However, it turns out that from 
the topological point of view, all these differences are not im-
portant. Crucial is the physical nature of the equation in which the 
relaxation is used. Namely, equations having the form of a con-
servation equation do not pose topological problems. However, 
relations in the form of an advection equation (Eq. 10) may be 
problematic. 
       To prove the above statement, let us start by noting that the 
conservation equations, regardless of the choice of σ’s compo-
nents, always contain at least two gradients of different physical 
quantities. On the contrary, the advection equation for some 
choices of σ has just one gradient. 

The above statement is true for every conservation equation, 
but in this work, we analyse mass transfer approaches, so we 
need to prove it only for the mass conservation equation, Eq. (1). 
To do so, let us extend the divergence term from its left-hand side: 

 

∇(αkρkuk) = ρkuk∇αk + αkuk∇ρk + αkρk∇uk.               (29) 
 

We obtained two terms with different gradients (∇αk and ∇ρk) 

and the divergence term (αkρk∇uk). 
Now, let us ponder on the advection equation, Eq. (10). It con-

tains only one gradient ∇ℶk. The only possibility to get at least 

two gradients from it is to choose ℶk and σ in such a way that 

ℶk = ℶk(σi, σj, … ). However, if this is not the case, Eq. 10 has 

only one gradient term that in general can be expressed as 

ac∇σj, where ac is a non-zero coefficient. Thus, the time-

independent 1-D version of the advection equation (10) can be 
rearranged: 

 

𝑑𝜎𝑗

𝑑𝑧
=

𝐾

𝑎𝑐
.                                                                                   (30) 
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The next thing to do is to show that the models that contain 
equations with only one gradient are topologically degenerated. 
Let us rearrange the equation system of the flow model in the 
non-autonomous form (Eq. 27) into the following form: 

𝑑𝜎𝑗

𝑑𝑧
𝐷(σ) = 𝑁𝑗(𝑧, σ).                                     (31) 

 

      Substitution of Eq. (30) to Eq. (31) gives the equation that 
reads: 
 

𝑁𝑗(𝑧, σ) =
𝐾

𝑎𝑐
𝐷(σ).                                                                (32) 

 

It means that when the main determinant D = 0 then Nj = 0. 

However, Nj = 0 does not vanish the remaining Ns (the author 

proved it for the HRM and the DEM  by recalling the momentum 
equation in [48]). 

The consequence of the demonstrated fact is that any model 
applying such a simple form of the closure equation (“single gra-
dient” equation) does not possess turning points (Fig. 1, the points 

F, G and H). Instead, other kinds of points appear when D = 0. 
Suppose that D → 0, then according to Eq. (30), dσj dz⁄  → 

Kac
−1, while according to Eq. (27), the remaining derivatives 

(i ≠ j) approaches ±∞. However, there is no trajectory (a contin-
uous multidimensional curve) that can satisfy such conditions (it is 
impossible for any curve to turn towards the opposite direction of 

the z-axis without being parallel to all other axes at the point of 
turning). In other words, the considered points refer to states that 
the analysed dynamical system [18] cannot archive. 

In summary, the consequence of using “single gradient” clo-
sure equation is that the considered model is inconsistent with the 
previously described structure of the phase space (the model is 
degenerated). Therefore, there is a clear need for more complex 
closure equations. The obvious candidate to be tested is an equa-
tion containing two gradients. 

 To prove that the “two gradients” closure equation (thus, also 
any conservation equation with relaxation terms) does not intro-
duce the topological flaw into the model, let us replace Eq. (30) 
with the following all-encompassing but simple relation: 

 

𝑎𝑐,𝑗

𝑑𝜎𝑗

𝑑𝑧
+ 𝑎𝑐,𝑖

𝑑𝜎𝑖

𝑑𝑧
= 𝐾,                                                           (33) 

 

were 𝑎𝑐,𝑖 and 𝑎𝑐,𝑗  are non-zero coefficients. Application of this 

equation to Eq. (31) results with: 
 

(
𝐾

𝑎𝑐,𝑗
−

𝑎𝑐,𝑖

𝑎𝑐,𝑗

𝑑𝜎𝑖

𝑑𝑧
) 𝐷(σ) = 𝑁𝑗(𝑧, σ).                                         (34) 

 

       From Eq. (27) we know that  
 

𝑑𝜎𝑖 𝑑𝑧⁄ = 𝑁𝑖(𝑧, σ) 𝐷(σ)⁄ ,  
 

thus: 
 

𝐾

𝑎𝑐,𝑗
𝐷(σ) −

𝑎𝑐,𝑖

𝑎𝑐,𝑗
𝑁𝑖 = 𝑁𝑗(𝑧, σ).                                               (35) 

 

       We can see that when D = 0 then not necessarily Nj = 0. 

Hoverer, having D = 0 and any of Ns equal to zero, vanishes the 

remaining N. 
This proves that the presence of at least two different gradient 

terms in the relaxation equation results in a model with the correct 
structure of the phase space (at least in the context of considered 
topological aspects). 

4. CONCLUSIONS 

This paper presents a brief succinct of the models for phase 
transition flow, followed by a quite detailed review of the two-
phase flow relaxation models just to create an appropriate back-
ground for an in-depth review of the nonequilibrium mass 
transport relaxation equations used in the mentioned models. The 
reviewed approaches are divided into five classes: simple ther-
modynamic relations, empirical phenomenological relations, more 
advanced thermodynamic approaches, relations based on the 
statistical phase change analysis, relations based on the nuclea-
tion theories and/or the kinetic theory of phase change. However, 
it is just one of many possible systematisations. A broader catego-
rization can be established as follows: phenomenological relations 
and approaches based on theories that bridge the microscopic 
depiction of the fluid to properties characterizing its macroscopic 
behaviour. The considered equations can also be classified as 
those that have a form of an advection equation (Eq. 10) and 
those having a form of phasic mass conservation (Eq. 1).   

The conducted topological analysis revealed that relaxation 
equations taking the form of an advection equation (or more pre-
cisely equation containing only one term with a gradient of veloci-
ty-state vector component), when integrated into the flow model, 
can lead to a violation of the phase space structure (making the 
model topologically degenerated). 

While the aforementioned sentence describes a potential ra-
ther than an inevitability, it becomes evident that all models linked 
to the equations outlined in Tab. 1 (three B-N type models and 
eight HRMs) and linked to Eq. (15) and Eq. (17) are inherently 
topologically degenerated. This does not mean that they are 
therefore worthless. In fact, the majority of these models have 
been validated through comparison with experimental results, 
affirming their practical utility. Then, what practical implications 
arise from the described degeneration? Let us start with the most 
certain things. 

The practical ramification of the identified flaw is that the de-
terminant described by Eq. (32) cannot be employed as the sec-
ond condition (alongside D = 0) for determining the singular 
point. Moreover, this determinant is unsuitable for discerning 
whether the flow is Possible or Impossible. Therefore, if this de-
terminant is used, the conventional solution algorithms of the 
initial-value problem (the PIF and the NCP algorithms) will not 
converge to the solution. In general, not being aware of the flaw 
may lead to the erroneous recognition of any of the turning points 
as a singular point. The significance of this issues diminishes 
when modelling unsteady flows or when a steady flow description 
is achieved by asymptotical convergence of the time-dependent 
solutions. Since, in such cases, the determination of singular 
points is not a pivotal step in the solution process. However, 
mentioned time-dependent solution methods require a significant-
ly longer computation time. 

The author also suspects that topologically degenerated mod-
els are more difficult to set up to accurately predict experimental 
flows. In other words, replacing the advection equations with the 
equations of the phasic mass conservation equation will simplify 
the mathematical form of correlations for the relaxation time (or 
the rate of relaxation) or the evolution of the saturation index. 
       Among the equations reviewed, many are based on the re-
laxation of the difference in the chemical potential and the specific 
Gibbs free energy. The author considers these approaches to be 
the most justified since these quantities are the same for both 
phases in equilibrium but more importantly, they appear in the first 
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law of thermodynamics written for an open multi-component sys-
tem. 

According to the author, relying on the relaxation of other 
physical quantities (such as pressure, temperature, entropy, etc.) 
is not deemed a mistake, as long as only two different quantities 
are utilized. After all, the chemical potential and the specific Gibbs 
free energy can be conceptualized as functions defined by pre-
cisely two distinct intensive properties. Therefore, paradoxically, 
some equations classified as “more advanced thermodynamic 
approaches”, in the author’s opinion, are not physically justified. 

Despite awareness of the topological flaw being able to pre-
vent potential problems, The author recommends the use of ap-
propriately complex closure equations to maintain the physical 
and mathematical consistency of the models. It was proved that 
closure equations with at least two gradients of different physical 
quantities should be employed. It is worth recalling that conserva-
tion equations exhibit this feature. 

Please recall that the theoretical expression for the relaxation 
time depends on the second-order derivative of specific Helmholtz 
free energy. However, using such an approach is tantamount to 
formulating a non-hyperbolic model. Perhaps the physical correct-
ness of modelling will dictate the development of new techniques 
for solving the considered flow cases. 

As a final conclusion, let us note that in the time when the 
“oldest” of the models considered here were formulated, the con-
ditions of their hyperbolicity were mainly studied. Subsequently, 
the models of the considered class were examined for their com-
pliance with the second law of thermodynamics. Therefore, the 
author expresses curiosity about whether the field has now en-
tered an era where scrutiny extends to verifying whether the 
formulated model is topologically non-degenerate. Nevertheless, 
the author is confident that in the forthcoming phase of the re-
search, he will focus on delving into unravelling the connection 
between topological aspects and the model's adherence to the 
second law, as well as the model's hyperbolicity. However, this is 
a long-term investigation, while proposing closure equations for 
the DEM that are topologically correct is now a simple matter for 
the author and will probably be crowned with an appropriate publi-
cation soon. 
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