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Abstract: In this research, we develop a new analytical technique based on the Elzaki transform (ET) to solve the fractional-order  
biological population model (FBPM) with initial and boundary conditions (ICs and BCs). This approach can be used to locate both  
the closed approximate solution and the exact solution of a differential equation. The usefulness and validity of this strategy for managing 
the solution of FBPM are demonstrated using a few real-world scenarios. The dependability of the suggested strategy is also shown using 
a table and a few graphs. The approximate solutions that were achieved and the convergence analysis are shown in numerical simulations 
in a range of fractional orders. From the numerical simulations, it can be seen that the population density increases with increasing  
fractional order, whereas the population density drops with decreasing fractional order. 
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1. INTRODUCTION 

Although fractional derivatives have a long mathematical his-
tory, science did not use them frequently for a very long time. One 
possible explanation for the unpopularity of fractional derivatives 
is the prevalence of various non-equivalent definitions of them [1–
3]. Furthermore, due to their non-locality, fractional derivatives 
lack a precise geometrical interpretation [1]. Over the past 10 
years, however, fractional calculus has begun to attract the atten-
tion of mathematicians and engineers much more. It was discov-
ered that fractional derivatives can effectively imitate a variety of 
applications, notably interdisciplinary ones. Fractional derivatives 
can be used to explain a variety of phenomena, such as the non-
linear oscillation of earthquakes [3],   Kilbas et al. [1] provide an 
overview of a few fractional derivative applications in continuous 
mechanics and statistical mechanics. 

Many authors have researched the analytical findings on the 
existence and distinctiveness of fractional differential equation 
[FDE] solutions. Various techniques, including Adomian decom-
position (ADM), Homotopy analysis [5], and many more, have 
been used in recent years to solve FDEs, FPDEs, and dynamic 
systems incorporating fractional derivatives. Fractional operators 
can be used to effectively represent phenomena with the memory 
effect since they are non-local. We stress that a particular frac-
tional operator can change a PDE from a local to a non-local one 
by substituting it for the classical derivative with respect to time.  

In this essay, the FBPM will be resolved using a novel ap-
proach called the Elzaki transform (ET) approach. ET and its 
variations are used to tackle boundary value problems. The rec-
ommended approach [10, 11, 21, 22, 24] presents the solution in 
a finite series form that is straightforward to compute, but the real 
strategy offers greater precision because different starting approx-
imations are employed in any iterations. This class of equations 

including linear fractional differential equations did not have an 
analytical solution method prior to the 17th century. Linear and 
non-linear population problems were handled in [8, 9] using the 
VIM and HPM. Akinfe and Loyinmi [13] have examined other 
earlier research attempts on the current fractional biological popu-
lation model and its applications in quantum physics, optics, fluid 
modelling employing the ET and a solitary wave solution to the 
generalised Burgers-Fisher’s equation using an improved differen-
tial transform method in [14–17, 28]. Additionally, the fractional 
order model is examined in [18–20] with regard to Esmehan Ucar 
et al. 

The Caputo fractional derivative was used for this study be-
cause it enables the formulation of the physical problems to in-
clude conventional initial and boundary conditions (BCs). Provide 
a few other crucial properties of fractional derivatives. A few in-
stances of the identified difficulties are addressed using the gen-
eral description of the suggested solution. Finding analytical solu-
tions to FBPM using initial conditions (ICs) and BCs is fairly diffi-
cult. The current study uses a relatively simple and straightforward 
methodology to obtain closed-form analytical answers for the 
FBPM. We’ll talk about the fractional biological population model 
in this article, and this strategy is a potent method for resolving the 
functional equations that arise from modelling various systems 
analytically. 

The plan of our paper is as follows: Brief definitions of frac-
tional calculus are given in Section 1. Some theorems of the ET 
are given in Section 2. The novel analytical method is presented 
in Section 3. The convergence analysis is presented in Section 4. 
In Section 5, three numerical examples are given to illustrate the 
applicability of the considered method. Numeric results are pre-
sented in Section 6.Section 7 is devoted to the conclusions of the 
work. 

The generalised time-fractional non-linear biological popula-
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tion equation we suggest in this paper is as follows: 

𝐷𝑡
𝛼Φ(𝑥, 𝑦, 𝑡) =

∂2

∂𝑥2
(Φ2) +

∂2

∂𝑦2
(Φ2) + 𝑓(Φ),    

0 < 𝛼 ≤ 1,    𝑡 > 0,

                 

(1) 

Given ICs and BCs, and based on Verhulst and Malthusian 
law, we explore a more generic version of, 

𝑓 (Φ) = ℎ Φ𝑎(1 − 𝑟Φ𝑏),   ℎ, 𝑎, 𝑏, 𝑟 ∈ ℝ,  

They switch to Verhulst and Malthusian laws when choosing 
exceptional values. 

Definition 1: The following definition for the Riemann–Liouville 
(R–L) [23], fractional integral (FI) operator, of the order 

𝛼  >   0,of 𝑓 ∈   𝐶𝜇 , 𝜇  ≥   −1, is given: 

𝐽𝛼𝑓(𝜂) =
1

Γ(𝛼)
∫ (𝜂 − 𝑣)𝛼 − 1𝑓(𝑣) 𝑑𝑣, 𝛼 > 0

𝜂

0
. 𝐽0 𝑓(𝜂) =

𝑓(𝜂).     

Some properties of 𝐽𝛼 , for, 𝑓𝑛 ∈  𝐶𝜇 , 𝑛 ∈ 𝑁, 𝛼, 𝛽 ≥

0 and 𝛾 ≥  −1: 

(a)    𝐽𝛼𝐽𝛽𝑓(𝜂)  =  𝐽𝛼 + 𝛽𝑓(𝜂)  

(b)   𝐽𝛼 𝜂𝛾 =  
Γ(𝛾 + 1)

Γ(𝛾 + 𝛼 + 1)
  𝜂𝛼 + 𝛾   

Definition 2: According to Caputo, the fractional derivative 

of  𝑓(𝜂), is: 𝐷𝛼𝑓(𝜂) = 𝐽𝑚  −  𝛼𝐷𝑚𝑓(𝜂). For 𝑚 − 1 <  𝛼 ≤
𝑚, 𝑚 ∈  𝑁, 𝜂 > 0,and𝑓 ∈   𝐶−1

𝑚 . 
Caputo’s fractional derivative (CFD) computes an ordinary de-

rivative first, then a FI to determine the right order of a fractional 
derivative. The FI operator of RL and the integer order integration 
are both linear operations: 

𝐽𝛼  (∑ 𝑐𝑖  𝑓𝑖(𝜂)𝑛
𝑖  =  1 )   =   ∑ 𝑐𝑖  𝐽𝛼𝑓𝑖(𝜂)𝑛

𝑖  =  1 , 

 where,{𝑐𝑖} 𝑖  =  1
𝑛 are constants. 

Fractional derivatives are interpreted as having a Caputo, 
meaning, in the current investigation, provides the reason for 
using the Caputo definition.  

2. ELZAKI TRANSFORM 

Here is a short explanation of the modified Sumudu transform, 
also known as the ET of the function Φ(η), 

𝐸[Φ(𝜂)] = 𝑝 ∫ Φ(𝜂)  𝑒
−

𝜂

𝑝
∞

0
𝑑𝜂 = 𝑇(𝑝)  ,        𝜂 > 0,  

where, 𝑝 is a complex value. 
Tarig M. Elzaki has shown in [10, 11, 5] that PDEs, ODEs, 

systems of PDEs, and Euler-Bernoulli Beam’s can all be solved 
using the modified Sumudu transform, or ET. When Sumudu and 
Laplace transforms are unsuccessful in solving DEs with variable 
coefficients, ET can be effectively used [12].  

Theorem 1: [2] IfΦ = Φ(x, y, t), then the partial derivatives 
are transformed by ET as follows: 

𝐸 [
∂ Φ 

∂𝑡
] =

1

𝑝
𝑇(𝑥, 𝑦, 𝑝) − 𝑝 Φ (𝑥, 𝑦, 0) ,            

𝐸 [
∂2Φ 

∂𝑡2 ] =
1

𝑝2 𝑇(𝑥, 𝑦, 𝑝) − Φ (𝑥, 𝑦, 0) − 𝑝
∂ Φ (𝑥,𝑦,0)

∂𝑡
  ,          

𝐸 [
∂ Φ 

∂𝑥
] =

𝑑

𝑑𝑥
[𝑇(𝑥, 𝑦, 𝑝)],            𝐸 [

∂2Φ 

∂𝑥2 ] =  
𝑑2

𝑑𝑥2
[𝑇(𝑥, 𝑦, 𝑝)],

𝐸 [
∂ Φ 

∂𝑦
] =

𝑑

𝑑𝑦
[𝑇(𝑥, 𝑦, 𝑝)],            𝐸 [

∂2Φ 

∂𝑦2 ] =  
𝑑2

𝑑𝑦2
[𝑇(𝑥, 𝑦, 𝑝)].

  

ET of some functions: 

Φ(𝜂) 𝐸[Φ(𝜂)] = 𝑇(𝑝) 

1 𝑝2 

𝜂 𝑝3 

𝜂𝑛 𝑛!   𝑝𝑛+2 

𝑒𝑎𝜂 
𝑝2

1 − 𝑎𝑝
 

sin𝑎𝜂 
𝑎𝑝3

1 + 𝑎2𝑝2 

cos𝑎𝜂 
𝑝2

1 + 𝑎2𝑝2 

 
Here, we show some lemmas that can be applied to extract 

the function Φ(η), from its ET. 

Lemma 1: ET of R–L FI operator of order α > 0, is repre-
sented as: 

𝐸[𝐽𝛼 Φ(𝜂)]  =  𝑝𝛼  𝑇(𝑝).  

Proof: We begin by: 

𝐸[𝐽𝛼 Φ(𝜂)] = 𝐸 [
1

Γ(𝛼)
 ∫ (𝜂  −   𝛼)𝛼 − 1Φ(𝜂)  𝑑𝜂

𝜂

0
] 

=
1

Γ(𝛼)
  

1

𝑝
 𝑇(𝑝) 𝐺(𝑝) = 𝑝𝛼 𝑇(𝑝)

,  

where 

𝐺(𝑝)   =   𝐸[𝜂𝛼 − 1]   =   𝑝𝛼  + 1Γ(𝛼). 

Lemma 2: ET of CFD for  α > 0,   m −  1  <  α ≤  m,
m ∈ N, is; 

𝐸[𝐷𝑡
𝛼Φ ]  =  𝑝𝑚−𝛼 [

𝑇(𝑥,𝑦,𝑝)

𝑝𝑚   −   
Φ (𝑥,𝑦,0)

𝑝𝑚−2   −   
∂ Φ (𝑥,𝑦,0)

∂𝑡

𝑝𝑚  −  3

 −   ⋅⋅⋅   −  𝑝 
∂𝑚−1 Φ (𝑥,𝑦,0)

∂𝑡𝑚−1

] ,

or   

  

𝐸[𝐷𝑡
𝛼Φ]  =

1

𝑝𝛼 𝐸[Φ ] − ∑
∂𝑘 Φ (𝑥,𝑦,0)

∂𝑡𝑘
𝑚−1
𝑘=0 𝑝2−𝛼+𝑘, 𝑚 − 1 <

𝛼 ≤ 𝑚,  

The following is the definition of the normal and generalized 
Mittag-Leffler functions: 

∈𝛼 (𝜂) = ∑  
𝜂𝑛

Γ(𝑛 𝛼  +  1)
∞
𝑛  =  0 , ∈𝛼 ,𝛽 (𝜂) = ∑  

𝜂𝑛

Γ(𝑛 𝛼  +  𝛽)
∞
𝑛  =  0 ..  

Lemma 3: If, α, β > 0, a ∈ C and 
1

pα  > |a|, the formula for 

inverse ET is as follows: 

𝐸−  1 [
𝑝𝛽   + 1

1  +   𝑎 𝑝𝛼
]   =   𝜂𝛽  − 1  ∈𝛼  ,𝛽 (− 𝑎 𝜂𝛼). 

Proof: 

𝑝𝛽   + 1

1  +  𝑎 𝑝𝛼  =  𝑝𝛽   + 1  
1

1  +  𝑎 𝑝𝛼   
  =   𝑝𝛽   + 1  ∑ (− 𝑎)𝑛(𝑝𝛼)𝑛∞

𝑛  =  0  

= ∑ (− 𝑎)𝑛  𝑝𝑛 𝛼 + 𝛽 + 1∞
𝑛  =  0 ,
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Then: 

𝐸−  1 [
𝑝𝛽   + 1

1  +  𝑎 𝑝𝛼]   =   𝐸−1[∑ (− 𝑎)𝑛  𝑝𝑛 𝛼 + 𝛽 + 1∞
𝑛  =  0 ]

= ∑
(− 𝑎)𝑛𝜂𝑛𝛼+𝛽  − 1

Γ(𝑛𝛼+𝛽)
∞
𝑛  =  0 = 𝐴𝛽  − 1 ∑

(− 𝑎𝜂𝛼)𝑛

Γ(𝑛𝛼+𝛽)
∞
𝑛  =  0 = 𝜂𝛽  − 1 ∈𝛼  ,𝛽 (− 𝑎 𝜂𝛼).

    

3. THE NOVEL ANALYTICAL METHOD 

We explain the basic tenets of the suggested approach in this 
section. Let’s look at the fractional non-linear non-homogeneous 
PDE, 

𝐷𝑡
𝛼Φ + 𝑅[Φ] + 𝑁[Φ] = 𝑔(𝑥, 𝑦, 𝑡) ,

0 < 𝛼 ≤ 2, 0 ≤ 𝑥 ≤ 𝑑 , 0 ≤ 𝑦 ≤ 𝑗 , 𝑡 ≥ 0, 𝑑, 𝑗 ∈ ℝ,
     

(2)

           

 

with the ICs, and BCs, 

Φ(𝑥, 𝑦, 0) = ℎ1(𝑥, 𝑦) ,   Φ𝑡(𝑥, 𝑦, 0) = ℎ2(𝑥, 𝑦) , 
Φ(0, 𝑦, 𝑡) = 𝑘1(𝑦, 𝑡) ,   Φ(𝑑, 𝑦, 𝑡) = 𝑘2(𝑦, 𝑡) ,
Φ(𝑥, 0, 𝑡) = 𝑘3(𝑥, 𝑡) ,    Φ(𝑥, 𝑗, 𝑡) = 𝑘4(𝑥, 𝑡) ,

        (3) 

R, N are linear and non-linear operators, and g, inhomogene-
ous terms.  

Considering that,Φn
∗  the new method was employed to calcu-

late the new solution, 

Φ𝑛
∗ = Φ𝑛 + (𝑑 − 𝑥)(𝑘1 − Φ𝑛(0, 𝑦, 𝑡)) + 𝑥(𝑘2  − Φ𝑛(𝑑, 𝑦, 𝑡))  +

(𝑗 − 𝑦)(𝑘3 − Φ𝑛(𝑥, 0, 𝑡)) + 𝑦(𝑘4  − Φ𝑛(𝑥, 𝑗, 𝑡)),
     

 

 (4) 

where n = 0, 1, ⋯. 

It is obvious thatΦn
∗  will meet both the ICs’ and BCs’ stand-

ards. We can resolve Eq. (2) by using the ET to deduce Eq. (3). 

𝐸[𝐷𝑡
𝛼Φ] + 𝐸{𝑅[Φ] + 𝑁[Φ]} = 𝐸[𝑔] ,

𝐸(Φ) = 𝑝2ℎ1(𝑥, 𝑡) + 𝑝3ℎ2(𝑥, 𝑡) − 𝑝𝛼𝐸{𝑅[Φ] + 𝑁[Φ] − 𝑔}.
 

       

 

 (5) 

It is believed that the solution to Eq. (2) has the following se-
ries form:      

Φ = ∑ Φ𝑛
∞
𝑛=0  ,     

                                              

                       (6) 

As a result of applying Eq. (6) and the inverse of ET to Eq. (5), 
we can now determine,           

∑ Φ∞
𝑛=0 = 𝐺 − 𝐸−1{𝑝𝛼𝐸[𝑅[Φ] + 𝑁[Φ]]},

                           

(7)

                        

 

When,Gan expression is made from a source word and the 
necessary ICs, 

This method relies on how we choose the initial iteration 

Φ0that offers the exact solution in a constrained number of steps. 
To discover the solution iteratively, apply the relations listed 

below.     

Φ𝑛+1 = 𝐸−1{𝑝𝛼𝐸[𝑅[Φ𝑛
∗ ] + 𝑁[Φ𝑛

∗ ]]} ,
 

 

Φ0 = 𝐺,              

                                                                        

(8) 

From Eqs. (8) and (4), we can infer that:  

Φ0,    Φ1,     Φ2 , . ..  ,      

The solution can then be inferred from Eq. (6). 
We demonstrate that FBPMs that are under the ICs, BCs, and 

ET may be resolved using the suggested strategy. 

4. CONVERGENCE ANALYSIS CONSIDERED PROBLEM 

This section examines the FBPM's convergence for the speci-
fied problem, as stated in Eq. (1). To do this, we apply the opera-
tor's Eq. (1) as: 

𝑇(Φ) = 𝐷𝑡Φ = (𝐷𝑥
2 + 𝐷𝑦

2) Φ2 + ℎΦ𝑎 − 𝑟ℎΦ𝑎+𝑏 ,  

Let 𝐻 ∈ 𝐿2[𝑇], ∀Φ ∈ 𝐻, [25] where  

𝐻 ∈ 𝐿Φ
2 [(𝑚, 𝑛) × [0, 𝑇]],  such that, 

Φ: = [(𝑚, 𝑛) × [0, 𝑇]] →  𝑅3,  

with 𝑚 << 0  and  𝐵 = [(𝑚, 𝑛) × [0, 𝑇]], 

where ‖Φ‖𝐻
2 = ∫ Φ2𝑑𝑥𝑑𝑦𝑑𝑡,

𝐵
 then 𝐸𝑡

−1{𝐸𝑡[Φ(𝑥, 𝑦, 𝑡)]} < ∞
 

We now assume the following in order to demonstrate T, to be 
semi-continuous [25]: 

Assumption:  

H1 for σ > 0, exist a constant β > 0, and  ∀Φ1, Φ2 ∈ H, 
with k‖Φ1 + Φ2‖ ≤ σ,  

we obtain 

‖T(Φ1) − T(Φ2)‖ ≤ β‖Φ1 − Φ2‖, ∀Φ1, Φ2 ∈ H. 

Theorem 2: (Convergence Condition)[26]. Without initial and 
BCs convergent to a specific solution, the problem under consid-
eration is examined in Eq. (1). 

Making use of the above Assumption for operator T(Φ), in 
Eq. (1), to obtain, 

𝑇(Φ1) − 𝑇(Φ2) = (𝐷𝑥
2 + 𝐷𝑦

2) Φ1
2 + ℎΦ1

𝑎 − 𝑟ℎΦ1
𝑎+𝑏

−{(𝐷𝑥
2 + 𝐷𝑦

2) Φ2
2 + ℎΦ2

𝑎 − 𝑟ℎΦ2
𝑎+𝑏} = 𝐷𝑥

2(Φ1
2 − Φ2

2)

+𝐷𝑦
2(Φ1

2 − Φ2
2) + ℎ(Φ1

𝑎 − Φ2
𝑎) − 𝑟ℎ(Φ1

𝑎+𝑏 − Φ2
𝑎+𝑏),

 

By using the norm, we can get:  

‖𝑇(Φ1) − 𝑇(Φ2)‖ = ‖𝐷𝑥
2(Φ1 − Φ2)(Φ1 + Φ2)‖

 +‖𝐷𝑦
2(Φ1 − Φ2)(Φ1 + Φ2)‖

+ℎ‖(Φ1
𝑎 − Φ2

𝑎)‖ − 𝑟ℎ‖(Φ1
𝑎+𝑏 − Φ2

𝑎+𝑏)‖,
 

By utilizing the conditions on the operators Dx
2, Dy

2, in 

H, ∃ ς1, ς2 > 0, and if a = b = 1, we can define, 

𝐷𝑥
2(Φ1 − Φ2)(Φ1 + Φ2) ≤ 𝜍1‖Φ1 − Φ2‖,   

𝐷𝑦
2(Φ1 − Φ2)(Φ1 + Φ2) ≤ 𝜍2‖Φ1 − Φ2‖,

 

Therefore, 

‖𝑇(Φ1) − 𝑇(Φ2)‖ ≤ 𝜍1‖Φ1 − Φ2‖ + 𝜍2‖Φ1 − Φ2‖

 +ℎ‖Φ1 − Φ2‖ − 𝑟𝜎‖Φ1 − Φ2‖   ⇒ 

 ‖𝑇(Φ1) − 𝑇(Φ2)‖ ≤ (𝜍1 + 𝜍2 + ℎ − 𝑟𝜎)‖Φ1 − Φ2‖,
 

Let,  

𝑑 =  𝜍1 + 𝜍2 + ℎ − 𝑟𝜎 > 0, then we can write,  

‖𝑇(Φ1) − 𝑇(Φ2)‖ ≤ 𝑑‖Φ1 − Φ2‖. 

Thus, the assumption is met. As a result, the suggested ap-
proach converges. 
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5. ILLUSTRATIVE EXAMPLES  

In this section, we will use three numerical examples to illus-
trate the efficiency and dependability of the method. 
Example 1: Take a look at FBPM in one dimension, 

𝐷𝑡
𝛼Φ(𝑥, 𝑡) =

∂2

∂𝑥2
(Φ2)  + Φ (1 −

4

9
Φ) , 0 < 𝛼 ≤ 1,       

0 ≤ 𝑥 ≤ 𝑑 ,     𝑡 ≥ 0,    𝑑, 𝑗 ∈ ℝ,

 

   (9)              

With the IC and BCs, 

𝛷(𝑥, 0) = 𝑒
𝑥

3,    𝛷(0, 𝑡) =∈𝛼 (𝑡𝛼) ,   𝛷(𝑑, 𝑡) = 𝑒
𝑑

3 ∈𝛼 (𝑡𝛼) ,
           (10)  

By combining the IC, ET, and Eq. (9), the following result is pro-
duced:  

1

𝑝𝛼
𝐸[Φ(𝑥, 𝑡)] − Φ(𝑥, 0)𝑝2−𝛼 − 𝐸[Φ(𝑥, 𝑡)] = 

𝐸 [
∂2

∂𝑥2
(Φ2)  −

4

9
Φ2],     

 ⇒  𝐸[Φ(𝑥, 𝑡)] =
𝑝2𝑒

𝑥
3

1−𝑝𝛼 +
𝑝𝛼

1−𝑝𝛼 𝐸 [
∂2

∂𝑥2
(Φ2)  −

4

9
Φ2] ,

  

Inverse ET suggests that: 

Φ((𝑥, 𝑡)) = 𝑒
𝑥

3 ∈𝛼 (𝑡𝛼) + 𝐸−1 {
𝑝𝛼

1−𝑝𝛼 𝐸 [
∂2

∂𝑥2
(Φ2)  −

4

9
Φ2]},  

The following diagram illustrates the iteration formula using an 
initial approximation.  

𝛷𝑛+1(𝑥, 𝑡) = 𝐸−1 {
𝑝𝛼

1−𝑝𝛼
𝐸 [

𝜕2

𝜕𝑥2
(𝛷𝑛

∗ )2  −
4

9
(𝛷𝑛

∗ )2]},

      

(11)

  

 

with,  Φ0(𝑥, 𝑡) = 𝑒
𝑥

3 ∈𝛼 (𝑡𝛼), 

Utilize the BCs in Eq. (4) and 𝑛 = 0, to ascertain: 

𝛷0
∗ (𝑥, 𝑡) = 𝛷0(𝑥, 𝑡) + (𝑑 − 𝑥)(𝛷(0, 𝑡) − 𝛷0(0, 𝑡))

+𝑥(𝛷(𝑑, 𝑡) − 𝛷0(𝑑, 𝑡)) = 𝑒
𝑥

3 ∈𝛼 (𝑡𝛼),
  

Eq. (11), give:
 

𝛷1(𝑥, 𝑡) = 𝐸−1 {
𝑝𝛼

1−𝑝𝛼 𝐸 [
𝜕2

𝜕𝑥2
(𝛷0

∗)2  −
4

9
(𝛷0

∗)2]}  = 0,  

Then,
  

𝛷1 = 0,     𝛷2  = 0,     𝛷3  = 0,   . ..  ,  

Using Eq. (6), to find the solution of Eq. (9),
    

𝛷(𝑥, 𝑡)  = ∑ 𝛷𝑛(𝑥, 𝑡)∞
𝑛=0 =  𝑒

𝑥

3 ∈𝛼 (𝑡𝛼), if  𝛼 =

1, then: 𝛷(𝑥, 𝑡)  =  𝑒
𝑥

3
+𝑡 . 

Example 2: Consider the FBPM in two-dimensional, 

𝐷𝑡
𝛼Φ =

∂2

∂𝑥2
(Φ2)  +

∂2

∂𝑦2
(Φ2)  + Φ, 0 < 𝛼 ≤ 1, 0 ≤ 𝑥, 𝑦 ≤

𝜋, 𝑡 ≥ 0,   

                                                                               

(12)

                     

 

With the IC and BCs, 

𝛷(𝑥, 𝑦, 0) = √𝑠𝑖𝑛𝑥𝑠𝑖𝑛ℎ𝑦,   𝛷(0, 𝑦, 𝑡) = 0 , 𝛷(𝜋, 𝑦, 𝑡) = 0,

𝛷(𝑥, 0, 𝑡) = 0 , 𝛷(𝑥, 𝜋, 𝑡) = √𝑠𝑖𝑛𝑥𝑠𝑖𝑛ℎ𝜋. ∈𝛼 (𝑡𝛼) ,
                                               

                                                                                                   (13)  

By combining the IC, ET, and Eq. (12), the following result is 
produced:  

1

𝑝𝛼 𝐸[Φ] − Φ(𝑥, 𝑦, 0)𝑝2−𝛼 − 𝐸[Φ(𝑥, 𝑦, 𝑡)] =       

𝐸 [
∂2

∂𝑥2
(Φ2)  +

∂2

∂𝑦2
(Φ2)] ,

 ⇒  𝐸[Φ] =
𝑝2

1−𝑝𝛼 √sin𝑥sinh𝑦 +
𝑝𝛼

1−𝑝𝛼 𝐸 [
∂2

∂𝐴2
(Φ2)  +

∂2

∂𝑦2
(Φ2)] ,

  

 
(1) 
 

 
(2) 

Fig. 1,2. 3D and 2D graph representations of the exact and approximate       
solutions for example 1, when t = 0.01, α = 0.95,0.85,0.75 

Tab. 1. The numirical outcome of example 1 is determinted by comparing  
the exact and approximate solutions for the two-terms 
approximation 

 t x 
      𝛂
= 𝟎, 𝟕𝟓 

     𝛂
= 𝟎, 𝟖𝟓 

     𝛂
= 𝟎, 𝟗𝟓 Exact 

 
 

0 1.03517 1.02136 1.01293 1.01005 

  0.1 1.07026 1.05598 1.04727 1.04429 

  0.2 1.10654 1.09177 1.08277 1.07968 

  0.3 1.14404 1.12878 1.11947 1.11628 

  0.4 1.18282 1.16704 1.15741 1.15411 

𝛷(𝑥, 𝑡) 0.01 0.5 1.22291 1.20659 1.19664 1.19323 

  0.6 1.26436 1.24749 1.2372 1.23368 

  0.7 1.30722 1.28978 1.27914 1.27549 

  0.8 1.35153 1.33349 1.32249 1.31873 

  0.9 1.39734 1.37869 1.36732 1.36343 

  1 1.4447 1.42542 1.41366 1.40964 
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Inverse ET suggests that: 

𝛷 =∈𝛼 (𝑡𝛼)√𝑠𝑖𝑛𝑥𝑠𝑖𝑛ℎ𝑦 + 𝐸−1 {
𝑝𝛼

1−𝑝𝛼 𝐸 [
𝜕2

𝜕𝑥2
(𝛷2)  +

𝜕2

𝜕𝑦2
(𝛷2)]},   

The following diagram illustrates the iteration formula using an 
initial approximation 

𝛷𝑛+1 = 𝐸−1 {
𝑝𝛼

1−𝑝𝛼 𝐸 [
𝜕2

𝜕𝑥2
(𝛷𝑛

∗)2  +
𝜕2

𝜕𝑦2
(𝛷𝑛

∗)2]},

                

(14) 

With, Φ0 =∈α (tα)√sinxsinhy,  use the BCs in Eq. (4) and 

n = 0  to find: 

Φ0
∗ = Φ0 + (𝜋 − 𝑥)(Φ(0, 𝑦, 𝑡) − Φ0(0, 𝑦, 𝑡)) 

+𝑥(Φ(𝜋, 𝑦, 𝑡) − Φ0(𝜋, 𝑦, 𝑡)) 

+(𝜋 − 𝑦)(Φ(𝑥, 0, 𝑡) − Φ0(𝑥, 0, 𝑡)) + 𝑦(Φ(𝑥, 𝜋, 𝑡) 

−Φ0(𝑥, 𝜋, 𝑡)) =∈𝛼 (𝑡𝛼)√sin𝑥sinh𝑦, 

From Eq. (14), we get: 

𝛷1 = 𝐸−1 {
𝑝𝛼

1−𝑝𝛼 𝐸 [
𝜕2

𝜕𝑥2
(𝛷0

∗)2  +
𝜕2

𝜕𝑦2
(𝛷0

∗)2]}  = 0,  

Then,  𝛷1 = 0,     𝛷2  = 0,     𝛷3  = 0,   . ..  ,  

The solution to Eq. (12) can then be found by applying Eq. (6), 

Φ = ∑ Φn
∞
n=0 = ∈α (tα)√sinxsinhy, 

when, α = 1, then Φ = et√sinxsinhy . 

 (3) 

 
(4) 

Fig. 3,4:   3D and 2D graph representations of the exact and approximate    
solutions for example 2, when t = 0.5, α = 0.95,0.85,0.75 

Tab. 2.  The numerical outcames of example 2 is determinted by 
comparing the exact and approximate solutions for the two-terms 
approximation. 

 t y x 
𝛂

= 𝟎, 𝟕𝟓
 

      𝛂
= 𝟎, 𝟖𝟓

 

     𝛂
= 𝟎, 𝟗𝟓

 
Exact 

 
 

 0 0. 0. 0. 0. 

   𝜋/6 4.85575 4.43446 4.1024 3.96186 

   𝜋/3 6.39052 5.83608 5.39906 5.21411 

𝛷(𝑦, 𝑡) 0,5 𝜋 𝜋/2 6.86706 6.27127 5.80167 5.60292 

   2𝜋/3 6.39052 5.83608 5.39906 5.21411 

   5 𝜋/6 4.85575 4.43446 4.1024 3.96186 

   𝜋 0. 0. 0. 0. 

Example 3: Think of the FBPM in two dimensions, 

Dt
αΦ(x, y, t) =

∂2

∂x2
(Φ2)  +

∂2

∂y2
(Φ2)  + kΦ, 0 < α ≤ 1,    

 0 ≤ x ≤ d, 0 ≤ y ≤ j, t ≥ 0, k, d, j ∈ ℝ,

      

                                                                                                   

(15) 
With the IC and BCs, 

𝛷(𝑥, 𝑦, 0) = √𝑥𝑦  , 𝛷(0, 𝑦, 𝑡) = 0, 

 𝛷(𝑑, 𝑦, 𝑡) = √𝑑𝑦 ∈𝛼 ((𝑘𝑡)𝛼),

𝛷(𝑥, 0, 𝑡) = 0 , 𝛷(𝑥, 𝑗, 𝑡) = √𝑗𝑥 ∈𝛼 ((𝑘𝑡)𝛼),
                  (16) 

The recurrence relationship will continue to exist in the same 
manner, using an initial approximation, as shown in the following: 

Φ𝑛+1 = 𝐸−1 {
𝑝𝛼

1−𝑝𝛼 𝐸 [
∂2

∂𝑥2
(Φ𝑛

∗ )2  +
∂2

∂𝑦2
(Φ𝑛

∗ )2]},              (17) 

With,  Φ0 =∈α ((kt)α)√xy , use the BCs in Eq. (4) and but, 

n = 0  to get: 

𝛷0
∗ = 𝛷0 + (𝑑 − 𝑥)(𝛷(0, 𝑦, 𝑡) − 𝛷0(0, 𝑦, 𝑡)) 

+𝑥(𝛷(𝑑, 𝑦, 𝑡)  − 𝛷0(𝑑, 𝑦, 𝑡))  + 

(𝑗 − 𝑦)(𝛷(𝑥, 0, 𝑡) − 𝛷0(𝑥, 0, 𝑡)) + 𝑦(𝛷(𝑥, 𝑗, 𝑡) 

−𝛷0(𝑥, 𝑗, 𝑡)) =∈𝛼 ((𝑘𝑡)𝛼)√𝑥𝑦 , 

The following is taken from Eq. (17): 

Φ1 = 𝐸−1 {
𝑝𝛼

1−𝑝𝛼
𝐸[0]}  = 0    

then, 
1 2 30, 0, 0, ... ,       

The solution to Eq. (15) can therefore be found using Eq. (6). 

  
0

,n

n

kt xy








   if, 1,  then: .kte xy  

(5) 
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(6) 

Fig. 5,6.   3D and 2D graph representations of the exact and approximate 
solutions for example 3, when t = 0.5, α = 0.95,0.85,0.75. 

Tab. 3.  The numerical outcames of example 3 is determinted by 
comparing the exact and approximate solutions for the two-terms 
approximation. 

 t y x 
𝛂

= 𝟎, 𝟕𝟓
 

      𝛂
= 𝟎, 𝟖𝟓

 

     𝛂
= 𝟎, 𝟗𝟓

 
Exact 

 
 

 0 1.03517 1.02136 1.01293 1.01005 

   0.1 1.07026 1.05598 1.04727 1.04429 

   0.2 1.10654 1.09177 1.08277 1.07968 

   0.3 1.14404 1.12878 1.11947 1.11628 

   0.4 1.18282 1.16704 1.15741 1.15411 

𝛷(𝑦, 𝑡) 0.5 0.5 0.5 1.22291 1.20659 1.19664 1.19323 

   0.6 1.26436 1.24749 1.2372 1.23368 

   0.7 1.30722 1.28978 1.27914 1.27549 

   0.8 1.35153 1.33349 1.32249 1.31873 

   0.9 1.39734 1.37869 1.36732 1.36343 

   1 1.4447 1.42542 1.41366 1.40964 

6. NUMERICAL RESULTS 

This work resolves the FBPM with ICs and BCs using a novel 
analytical method based on ET. Results obtained using earlier 
methods are not equivalent to those obtained with current meth-
ods. Multiple parameter values are given in Eqs. (9), (12), and 
(15) to offer a variety of solutions. A variety of solutions can be 
produced by permitting the arbitrary parameters to have different 
values in the solutions. The responses gathered are categorized. 
Visual representations in 2D and 3D are also developed. The 
following information can be used to describe these plots: Figs. 1, 
2, and 3 depict lone waves in different arrangements. Fig. 1 was 
produced for the values in Eq. (9), showing: at  α =
0.95,0.85,0.75 , t = 0.01.This mixture falls within the periodic 

category. Fig. 2 was created using the data α = 0.95,
0.85, 0.75 , t = 0.5, in Eq. (12). Fig. 3 was created usingα =
0.95, 0.85, 0.75, t = 0.5, in Eq. (15). 

The exact solution, which was determined by comparing the 
values of the exact and approximate solutions of FBPM discov-

ered in this issue for various values of the variables,0 < x ≤
1, t = 0.01, is provided in Tab.1. Tab.2 contains the approximate 
solutions, which were ascertained by comparing the values of the 
exact solutions of FBPM for various values of the variables, 

0 < x ≤ π, y = π, t = 0.5. 0 < x ≤ 1, y = 0.5, t = 0.5.  We 
were able to determine the exact solution, which is presented in 
Tab. 3. The suggested approaches were found to be both worka-
ble and efficient. Using the Wolfram Mathematica program, the 
simulations were run and the outcomes were examined.  

7. CONCLUSION 

In this paper, analytical evaluations of non-linear fractional 
biological population models with ICs and BCs are carried out. 
The Riemann–Liouville FI operator generates partially specified 
fractional derivatives. For the speedy and effective resolution of 
numerous difficulties, a novel approach based on ET is proposed. 
Three examples are offered to show the value of the suggested 
approach. The solutions might be handled in a very simple way. 
The outstanding ability of the approach to solve non-linear FBPM 
utilising ICs and BCs allows it to be modified to address a variety 
of boundary value problems. In addition, 2D and 3D graphs were 
employed to demonstrate how the suggested approach contribut-
ed to the outcomes. 

Figures and tables demonstrate that the shapes of the solu-
tions discovered using the suggested method is similar to those of 
the precise solution when the same parameters were chosen. The 
proposed method can also be extended to solve additional FPDEs 
that arise in applied research, according to the ease with which it 
can be put into practice. In the future, we propose adapting the 
considered novel approach with the ET scheme for the analysis of 
nonlinear partial differential equations and certain advanced inte-
gral-related problems in fluid dynamics and elasticity and investi-
gating the proposed method’s stability and error analysis in forth-
coming articles. Finally, we affirm that, subject to ICs and BCs, the 
proposed technique is valid and applicable to all non-linear 
FPDEs. 
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