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Abstract: The Helmholtz equation is an important differential equation. It has a wide range of uses in physics, including acoustics, electro-
statics, optics, and quantum mechanics. In this article, a hybrid approach called the Shehu transform decomposition method (STDM) is im-
plemented to solve space-fractional-order Helmholtz equations with initial boundary conditions. The fractional-order derivative is regarded 
in the Caputo sense. The solutions are provided as series, and then we use the Mittag-Leffler function to identify the exact solutions to the 
Helmholtz equations. The accuracy of the considered problem is examined graphically and numerically by the absolute, relative, and recur-
rence errors of the three problems. For different values of fractional-order derivatives, graphs are also developed. The results show that 
our approach can be a suitable alternative to the approximate methods that exist in the literature to solve fractional differential equations. 
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1. INTRODUCTION 

The fractional calculus (FC) results from several straightfor-
ward questions regarding the concept of derivatives: why does a 
function's half-order derivative reveal information that the first-
order derivative does not? By providing answers to these issues, 
researchers create a new window of opportunity between the 
mathematical and physical worlds, leading to several exciting new 
questions and findings. For instance, unlike the conventional 
derivative, the fractional-order derivative (FOD) of a constant 
function is not always zero [1]. 

The memory idea is the most beneficial interpretation of FC. In 
general, systems are considered to be memoryless when their 
output at each time t depends only on the input at time t. Howev-
er, when the system has to remember past values of the input to 
compute the present value of the output, these systems are re-
ferred to as memory systems or non-memoryless systems. The 
memory property of FOD refers to their ability to capture and 
incorporate information from past states. Instead of traditional 
integer-order derivatives, which rely solely on the current state of 
a system, FOD retain memory of past states over a certain time 
horizon. This memory property is particularly useful in modeling 
and analyzing systems with long-term dependencies or non-local 
effects, where past events continue to influence the system's 
dynamics alongside the current state. By incorporating information 
from past states, FOD provide a more accurate representation of 
the system's behavior and enable better predictions of its future 
evolution. In practical terms, the memory property of FOD allows 
for a more nuanced understanding of complex phenomena in 
various fields, including physics, engineering, biology, finance, 
and more. It facilitates the development of more accurate models 
and control strategies for systems exhibiting non-local or long-
term memory effects. 

Different from integer-order derivatives, there are several 
kinds of definitions for FOD [2-5]. These definitions are generally 
not equivalent to each other. In the following, we introduce several 
definitions. 

The natural derivative is fundamentally extended into a frac-
tional derivative by the Grünwald-Letnikov derivative. Both Anton 
Karl Grünwald and Aleksey Vasilievich Letnikov introduced it in 
1867 and 1868, respectively [6]. It is therefore written as: 

ℑ𝜍𝛯(𝜏) = 𝑙𝑖𝑚
ℏ→0

1

ℏ
∑ (−1)𝜅∞

𝜅=0 [
𝜍
𝜅

] 𝛯(𝜏 − 𝜅ℏ),           

where κ ∈ N, and the gamma function is used to determine the 
binomial coefficient, 

[
𝜍
𝜅

] =
𝜍(𝜍 − 1)(𝜍 − 2)(𝜍 − 3) ⋯ (𝜍 − 𝜅 + 1)

𝜅!
. 

In 1847, Riemann defined the new fractional order derivative 
that is called Riemann-Liouville fractional derivatives (RLFD) [7]. It 
is defined as follows: 

ℑ0,𝜏
𝜍

𝛯(𝜏) =
𝑑𝜅

𝑑𝜏𝜅 𝐷0,𝜏
−(𝜅−𝜍)

𝛯(𝜏) =
1

𝛤(𝜅−𝜍)

𝑑𝜅

𝑑𝜏𝜅 ∫ (𝜏 −
𝜏

0

ϒ)𝜅−𝜍−1  𝛯(ϒ)𝑑ϒ,  

where κ − 1 ≤ ς < κ ∈ Z+ 
The Caputo fractional derivative (CFD) was established in 

1967 [8] because it was ineffective in the description and model-
ling of some complicated events. 

ℑ0,𝜏
𝜍

𝛯(𝜏) = 𝐷0,𝜏
−(𝜅−𝜍) 𝑑𝜅

𝑑𝜏𝜅 𝛯(𝜏) =
1

𝛤(𝜅−𝜍)
∫ (𝜏 −

𝜏

0

ϒ)𝜅−𝜍−1 𝑑𝜅

𝑑𝜏𝜅 𝛯(ϒ)𝑑ϒ,     

where  𝜅 − 1 ≤ 𝜍 < 𝜅 ∈ 𝑍+ 
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The RLFD of a constant W is given by 
Wτ−κ

Γ(1−ς)
. As a result, the 

CFD's ability to provide the derivative of a constant zero, as in an 
ordinary derivative, is one of its strengths. 

It is important to keep in mind that while all FOD behave the 
same when the order is an integer, they may behave differently 
when the order is not an integer. For instance, in a non-integer 
order, the CFD of a constant behaves differently than the RLFD 
because it is zero. There are more fractional derivatives; the 
interested reader is referred to [9-12] for further details. 

Fractional-order differential equations (FODEs) are mathemat-
ical representations of natural and physical phenomena that occur 
in the fields of science and engineering. As a result, we detect the 
mechanism of these FODEs through the study of the approximate 
and exact solution, and their genuine physical intention can be 
understood from the graphical representation of the solution. 

Due to their arbitrary features, FODEs are thought to be more 
difficult to compute than integer-order differential equations. In the 
literature, several methods are developed over the past few dec-
ades, namely the invariant subspace method [13], the Lie sym-
metry approach [14], the (G/G)-Expansion Method [15], the Haar 
wavelet method [16], the operational matrix method [17], and the 
sub-equation method [18] to solve the fractional differential and 
integral equations. 

However, in some circumstances, especially when dealing 
with large and complex problems, the approximate solution tech-
nique for handling FODEs proves to be more effective and practi-
cal. As a result, different approximate techniques are created by 
researchers to solve various types of FODEs. For instance, the 
operational matrix approach [19], the Elzaki residual power series 
approach [20], the homotopy analysis method [21], and the de-
composition method [22], for more approximate techniques, see 
[23-25]. Absolute, relative, and recurrence errors are commonly 
used to assess the accuracy of approximate methods in solving 
mathematical problems. By analyzing these error measures, 
researchers can gain a comprehensive understanding of the 
performance of approximate methods. Indeed, most researchers 
commonly utilize absolute, relative, and recurrence errors as 
primary metrics for assessing the accuracy and convergence of 
approximate methods in solving mathematical problems [26-29]. 

The wave equation can be used to derive the Helmholtz equa-
tion (HH-E), an elliptic partial differential equation. The HH-E is 
used to explain a variety of phenomena, including electromagnetic 
waves in fluids, vibrating lines, plates, and walls, as well as acous-
tics, magnetic fields, nuclear power plants, and geoscience. Take 
into account a 2D non-homogeneous isotropic material whose 
Euclidean space velocity is V. The wave result, Ξ(ν, ϖ), which 

has the harmonic origin Θ(ν, ϖ) as its point of vibration and 
vibrates at the fixed frequency ω > 0, satisfies the HH-E for the 

defined area R. 

𝜕2

𝜕𝜈2 𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛) + 𝛺𝛯(𝜈, 𝜛) = −𝛩(𝜈, 𝜛), 

where Ξ(ν, ϖ) is an appropriately differentiable function at the 
boundary of R, and Θ(ν, ϖ) is a specified function, Ω > 0 is a 

constant value, and √Ω =
ω

V
 is a wave number with a wavelength 

of 
2π

√Ω
. 

In this research, STDM is applied to the HH-E in the sense of 
CFD of x-space in the following form: 

ℑ𝜈
𝜍

𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛) + 𝛺𝛯(𝜈, 𝜛) = −𝛩(𝜈, 𝜛), 1<𝜍 ≤ 2,  

subject to the initial conditions (I-Cs) 

𝛯(𝜈, 0) = 𝛹(𝜛), 𝛯𝜈(𝜈, 0) = 𝛵(𝜛). 

Furthermore, we similarly apply STDM to the HH-E in terms of 
the CFD of y-space: 

ℑ𝜛
𝜍

𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜈2 𝛯(𝜈, 𝜛) + 𝛺𝛯(𝜈, 𝜛) = −𝛩(𝜈, 𝜛), 1<𝜍 ≤ 2.  

with the following I-Cs: 

𝛯(𝜈, 0) = 𝛷(𝜈), 𝛯𝜛(𝜈, 0) = 𝛲(𝜈). 

In general, boundary conditions for the HH-E specify the be-
havior of the solution at the boundaries of the domain in which the 
equation is being solved. These boundary conditions can be of 
various types, including Dirichlet boundary conditions, Neumann 
boundary conditions, or mixed boundary conditions.  

Dirichlet boundary conditions: These specify the value of the 
solution at the boundary of the domain. Mathematically, it can be 
expressed as Ξ(ν, ϖ) = g(ν, ϖ) , where g(ν, ϖ) is a given 
function describing the boundary values. 

Neumann boundary conditions: These specify the normal de-
rivative of the solution at the boundary of the domain. Mathemati-
cally, it can be expressed as   

∂

∂n
Ξ(ν, ϖ) = f(ν, ϖ),  

where f(ν, ϖ)  is a given function describing the normal derivative 
on the boundary. 

Mixed boundary conditions: These are a combination of Di-
richlet and Neumann boundary conditions, specifying both the 
value of the solution and its normal derivative at different parts of 
the boundary. 

The choice of boundary conditions depends on the physical 
problem and the geometry of the domain. For example, in acous-
tic problems, Dirichlet boundary conditions might be used to 
specify the pressure at the boundaries of a room, while in elec-
tromagnetic problems, Neumann boundary conditions might be 
used to specify the normal component of the electric field at a 
conducting boundary. 

The solution of the HH-E holds significant importance across 
various fields of science and engineering due to its wide range of 
applications. Here are some reasons highlighting its importance: 

Acoustics: In acoustics, the HH-E describes the behavior of 
sound waves in different media. Solutions to this equation help in 
understanding phenomena such as sound propagation, reso-
nance, and wave interference. Applications include designing 
concert halls, noise control, and ultrasound imaging. 

Electromagnetics: In electromagnetics, the HH-E describes 
the behavior of electromagnetic fields, such as those produced by 
antennas, waveguides, and resonant cavities. Solutions to this 
equation are crucial for designing communication systems, radar 
systems, and microwave devices. 

Optics: In optics, the HH-E governs the propagation of light 
waves through various optical media. Solutions to this equation 
are essential for designing optical components, such as lenses, 
mirrors, and optical fibers, as well as for understanding phenome-
na like diffraction and interference. 

Quantum mechanics: In quantum mechanics, the HH-E ap-
pears in the context of the Schrödinger equation, which describes 
the behavior of quantum particles in potential fields. Solutions to 
this equation provide insights into the energy levels and wave 
functions of quantum systems, with applications in atomic physics, 
solid-state physics, and quantum chemistry. 
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Engineering: In general engineering applications, the HH-E 
arises in problems involving wave propagation, vibration analysis, 
and structural dynamics. Solutions to this equation are essential 
for designing structures, predicting their response to external 
forces, and optimizing their performance. 

Overall, the solution of the HH-E plays a crucial role in under-
standing and modeling various physical phenomena, enabling the 
development of innovative technologies and solutions across 
different fields. 

One of the most helpful mathematical methods is the use of 
integral transforms to solve differential equations (DEs) and inte-
gral equations. DEs can be expressed in terms of a straightfor-
ward algebraic equation by selecting the appropriate integral 
transform (IT). Many mathematicians are interested in a novel IT 
known as the "Shehu transforms (Sh-T)". The suggested IT is 
effectively applied to both ordinary and partial DEs, and it is de-
rived from the classical Fourier IT.  

In this paper, the HH-E problem is solved in the context of 
CFD using the Sheu transform (Sh-T) and the Adomian decompo-
sition method (ADM). The primary advantage of this method is 
that it does not call for the solution of any parameters in the equa-
tion. Consequently, it circumvents certain limitations associated 
with traditional perturbation techniques. The accuracy and effec-
tiveness of the STDM are confirmed by comparing the approxi-
mate solution (App-S) and the exact solution (Ex-S). Additionally, 
2D graphs are generated for various values of FOD, illustrating 
the convergence of the approximation solution to the Ex-S as 
FOD increases.  Therefore, results show that the fifth-step App-S 
perfectly agrees with the exact solution. The numerical analysis in 
the sense of absolute errors (Abs-Er), relative errors (Rel-Er), and 
recurrence errors (Rec-Er) evaluations establish the correctness 
and convergence, proving the effectiveness of the suggested 
method. Therefore, our suggested approach is effective and 
simple to apply to many different kinds of related scientific and 
technical problems. 

The major contributions of this paper include at least the fol-
lowing aspects: The system we study is more generalized be-
cause it includes the FOD. For the first time in literature, we use 
the Shehu transform to solve fractional Helmholtz equations. We 
obtain both approximate and exact solutions. The suggested 
approach is a useful tool for both exact and approximate FODE 
solutions. The strength of the scheme lies in the modest size of 
computation required for the proposed approach, which yields 
accuracy with fewer computations. The efficiency and reliability of 
the recommended approach are demonstrated by the error analy-
sis. 

The following is how this study is structured: First, in Section 
2, we use key definitions and findings from FC theory. The algo-
rithm STDM for solving space-fractional Helmholtz equations is 
then covered in Section 3. Some problems in Section 4 are solved 
with the use of STDM. In Section 5, we also present a graphic and 
numerical comparison of approximate and exact solutions in terms 
of Abs-Er, Rel-Er, and Rec-Er, demonstrating the validity of the 
suggested approach. Lastly, we provide a summary of our find-
ings in the conclusion. 

2. PRELIMINARY CONCEPTS    

We provide some helpful definitions related to FC in this sec-
tion. The Mittag-Leffler function (ML-F), which is important in FC, 

is defined first. Next, we go through some fundamental Sh-T 
terms, definitions, and theorems that are relevant to this study. 

Definition 1. [30] A direct generalization of the exponential 
function, eν, is the ML-F. The power series formula for the two-
parameter ML-F is as follows: 

𝐸𝛼,𝛽(𝜈) = ∑
𝜈𝜅

𝛤(𝛼𝜅+𝛽)

∞
𝜅=0 , 𝛼 > 0, 𝛽 > 0.  

The definition of the one-parameter ML-F is: 

𝐸𝛼(𝜈) = ∑
𝜈𝜅

𝛤(𝛼𝜅+1)

∞
𝜅=0 , 𝛼 > 0.  

We get well-known classical functions when the parameters α,
βare chosen in specific ways. 

𝐸1,1(𝜈) = 𝑒𝜈 , 𝐸1,2(𝜈) =
𝑒𝜈−1

𝜈
, 𝐸2,1(𝜈2) =

𝑐𝑜𝑠ℎ 𝜈 , 𝐸2,2(𝜈2) =
𝑠𝑖𝑛ℎ 𝜈

𝜈
.  

Definition 2.  [31] The Sh-T is defined as follows: 

𝑆[Ξ(𝜈, 𝜛)] = 𝑃(𝜇, 𝜂) = ∫ Ξ(𝜈, 𝜛)𝑒
−𝜇𝜈

𝜂
∞

0
𝑑𝜈, 𝜈 > 0,                     

The inverse Sh-T is given by 

𝑆−1{𝑃(𝜇, 𝜂)} = Ξ(𝜈, 𝜛) =
1

2𝜋𝑖
∫

1

𝑣
𝑃(𝜇, 𝜂)𝑒

−𝜇𝜈

𝜂
𝑤+𝑖∞

𝑤−𝑖∞
𝑑𝜇,                                           

where μ and η are the Sh-T variables, and w is a real constant, 
and the integral is taken along μ = w in the complex plane s =
ν + ϖi. 

Some important properties of Sh-T are as follows [32] 

𝑆[𝛬1𝛯1(𝜈) + 𝛬2𝛯2(𝜈)] = 𝛬1𝑆[𝛯1(𝜈)] + 𝛬2𝑆[𝛯2(𝜈)]. 

𝑆[1] =
𝜇

𝜂
. 

𝑆 [
𝜈𝑛

𝑛!
] = (

𝜇

𝜂
)

𝑛+1
for 𝑛 = 0, 1, 2, 3,.  .  .. 

𝑆[𝜈𝜍] = (
𝜇

𝜂
)

𝜍+1

𝛤(𝜍 + 1). 

Definition 3. [32] The Sh-T for nth derivatives is defined as 

𝑆[ℑ(𝑛)𝛯(𝜈)] =
𝜇𝑛

𝜂𝑛 𝑆[𝛯(𝜈)] − ∑ (
𝜇

𝜂
)𝑛−1

𝜅=0

𝑛−𝜅−1

𝛯(𝜅)(0), 𝑛 ≥ 1.  

Definition 4. [33] The Sh-T of CFD of Ξ(ν, ϖ) with order ς is 
defined as 

𝑆[ℑ(𝜍)𝛯(𝜈)] =
𝜇𝜍

𝜂𝜍 𝑆[𝛯(𝜈)] −

    ∑ (
𝜇

𝜂
)𝜅−1

𝜅=0

𝜍−𝜅−1

𝛯(𝜅)(0), 𝜅-1<𝜍 < 𝜅.  

3. ALGORITHM OF THE SHEHU TRANSFORM DECOMPOSI-
TION METHOD  

The primary goal of this section is to provide a series-form so-
lution for the HH-E using STDM. The main algorithms of STDM 
are as follows: To do so, first apply the Sh-T to both sides of the 
given problem to convert the given model into algebraic expres-
sions, and then use the inverse Sh-T to convert the obtained 
algebraic expression into the model’s real domain. In the next 
step, we provide the series solutions of the model by using the 
ADM on the algebraic expressions that are attained with the help 
of Sh-T and inverse Sh-T. 

As the fundamental idea of the suggested technique, we take 
into consideration a general form of HH-E: 
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𝜕2

𝜕𝜈2 𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛) + 𝛺𝛯(𝜈, 𝜛) = −𝛩(𝜈, 𝜛),        (1)  

with the I-Cs  

 𝛯(0, 𝜛) = 𝛷(𝜛), 𝛯𝜈(0, 𝜛) = 𝑃(𝜛).                                        (2) 

Applying the Sh-T to Eq. (1), we use the differentiation proper-
ty of the Sh-T, and after some calculation, as a result, we get as 
follows: 

𝑆[𝛯(𝜈, 𝜛)] =
𝜂

𝜇
𝛷(𝜛) − (

𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛)] −

(
𝜂

𝜇
)

𝜍

𝛺𝑆[
𝜕2

𝜕𝜆2 𝛯(𝜈, 𝜛)] −   (
𝜂

𝜇
)

𝜍
𝑆[𝛩(𝜈, 𝜛)],                                 (3)                                            

Taking the inverse Sh-T on Eq. (2), we have 

𝛯(𝜈, 𝜛) = 𝑆−1[
𝜂

𝜇
𝛷(𝜛)] − 𝑆−1[(

𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛)]] −

𝑆−1[(
𝜂

𝜇
)

𝜍

𝛺𝑆[
𝜕2

𝜕𝜆2 𝛯(𝜈, 𝜛)]] −  𝑆−1[(
𝜂

𝜇
)

𝜍
𝑆[𝛩(𝜈, 𝜛)]],              (4)                                                                

Implementing ADM in Eq. (4), therefore, supposes that the so-
lution of Eq. (1) can be expressed as follows: 

𝛯(𝜈, 𝜛) = ∑ 𝛯𝜅(𝜈, 𝜛)∞
𝜅=0 .                                                             (5) 

Using Eq. (5) in Eq. (4).     

𝛯(𝜈, 𝜛) = 𝑆−1[
𝜂

𝜇
𝛷(𝜛)] −

𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2
∑ 𝛯𝜅(𝜈, 𝜛)∞

𝜅=0 ]] −

 𝑆−1[(
𝜂

𝜇
)

𝜍

𝛺𝑆[
𝜕2

𝜕𝜆2
∑ 𝛯𝜅(𝜈, 𝜛)∞

𝜅=0 ]] − 𝑆−1[(
𝜂

𝜇
)

𝜍
𝑆[𝛩(𝜈, 𝜛)]]. (6)    

By comparing the two sides of Eq. (6), we arrive at the follow-
ing terms for the series solution: 

𝛯0(𝜈, 𝜛) = 𝑆−1[
𝜂

𝜇
𝛷(𝜛)] − 𝑆−1[(

𝜂

𝜇
)

𝜍

𝑆[𝛩(𝜈, 𝜛)]].  

𝛯1(𝜈, 𝜛) = −𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2 𝛯0(𝜈, 𝜛)]] −

𝑆−1[(
𝜂

𝜇
)

𝜍

𝛺𝑆[
𝜕2

𝜕𝜆2 𝛯0(𝜈, 𝜛)]]. 

𝛯2(𝜈, 𝜛) = −𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2 𝛯1(𝜈, 𝜛)]] −

𝑆−1[(
𝜂

𝜇
)

𝜍

𝛺𝑆[
𝜕2

𝜕𝜆2 𝛯1(𝜈, 𝜛)]].  

𝛯𝜅+1(𝜈, 𝜛) = −𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2 𝛯𝜅(𝜈, 𝜛)]] −

𝑆−1[(
𝜂

𝜇
)

𝜍

𝛺𝑆[
𝜕2

𝜕𝜆2 𝛯𝜅(𝜈, 𝜛)]]. 

We can quickly reach the convergent series because it is sim-
ple to determine the  Ξ(ν, ϖ) component. We can acquire as 

κ → ∞. 

𝛯(𝜈, 𝜛) = 𝑙𝑖𝑚
𝜅→∞

𝛯𝜅(𝜈, 𝜛).  

4. NUMERICAL EXAMPLES 

To comprehend the steps of the suggested approach, we ap-
ply the STDM to three problems in this section of the paper. 

Example 3.1 Consider the ν-space fractional-order HH-E. 

ℑ𝜈
𝜍

𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛) − 𝛯(𝜈, 𝜛) = 0, 1<𝜍 ≤ 2,             (7)           

with the I-Cs 

𝛯(0, 𝜛) = 𝜛, 𝛯𝜈(0, 𝜛) = 0.                                                         (8)        

Applying the Sh-T of Eq. (8), and making some calculations as 
a result, we get the following: 

𝑆[𝛯(𝜈, 𝜛)] =
𝜂

𝜇
𝜛 − (

𝜂

𝜇
)

𝜍

𝑆 [
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛)] +

(
𝜂

𝜇
)

𝜍

𝑆[𝛯(𝜈, 𝜛)],                     (9)                 

Taking the inverse Sh-T on Eq. (9), we have 

𝛯(𝜈, 𝜛) = 𝑆−1 [
𝜂

𝜇
𝜛] − 𝑆−1[(

𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛)]] +

𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[𝛯(𝜈, 𝜛)]].                                                                   (10)     

Implementing ADM in Eq. (10), therefore, supposes that the 
solution of Eq. (7) can be expressed as follows: 

𝛯(𝜈, 𝜛) = ∑ 𝛯𝜅(𝜈, 𝜛).∞
𝜅=0                                                            (11)    

Using Eq. (11) in Eq. (10). 

∑ 𝛯𝜅(𝜈, 𝜛)∞
𝜅=0 = 𝑆−1 [

𝜂

𝜇
(𝜛)] −

𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2
∑ 𝛯𝜅(𝜈, 𝜛)∞

𝜅=0 ]] +

𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[∑ 𝛯𝜅(𝜈, 𝜛)∞
𝜅=0 ]].  

We obtain the following terms for the series solution by using 
the method described in the preceding section: 

𝛯0(𝜈, 𝜛) = 𝑆−1[
𝜂

𝜇
𝜛],  

𝛯0(𝜈, 𝜛) = 𝜛.  

𝛯1(𝜈, 𝜛) = 𝜛
𝜈𝜍

𝛤(𝜍+1)
.  

𝛯2(𝜈, 𝜛) = 𝜛
𝜈2𝜍

𝛤(2𝜍+1)
.  

𝛯3(𝜈, 𝜛) = 𝜛
𝜈3𝜍

𝛤(3𝜍+1)
.  

𝛯4(𝜈, 𝜛) = 𝜛
𝜈4𝜍

𝛤(4𝜍+1)
.  

𝛯5(𝜈, 𝜛) = 𝜛
𝜈5𝜍

𝛤(5𝜍+1)
.  

The series forms a solution to the given problem, and we have 

𝛯(𝜈, 𝜛) = 𝜛 + 𝜛
𝜈𝜍

𝛤(𝜍+1)
+ 𝜛

𝜈2𝜍

𝛤(2𝜍+1)
+ 𝜛

𝜈3𝜍

𝛤(3𝜍+1)
+

𝜛
𝜈4𝜍

𝛤(4𝜍+1)
+ 𝜛

𝜈5𝜍

𝛤(5𝜍+1)
+ ⋯.  

𝛯(𝜈, 𝜛) = 𝜛 (1 +
𝜈𝜍

𝛤(𝜍+1)
+

𝜈2𝜍

𝛤(2𝜍+1)
+

𝜈3𝜍

𝛤(3𝜍+1)
+

𝜈4𝜍

𝛤(4𝜍+1)
+

𝜈5𝜍

𝛤(5𝜍+1)
+ ⋯ ).  

𝛯(𝜈, 𝜛) = 𝜛 ∑
𝜈𝜅𝜍

𝛤(𝜅𝜍+1)

∞
𝜅=0 .  

Using the M-L function, we may establish the Ex-S to Eq. (7) 
with respect to I-Cs. 

𝛯(𝜈, 𝜛) = 𝜛𝐸𝜍(𝜈𝜍),   

such that, where 𝐸𝜍(𝜈𝜍)is the M-L function. If 𝜍 = 2, then 

𝐸2(𝜈2) = ∑
𝜈2𝑘

𝛤(2𝑘+1)

∞
𝑘=0 = ∑

𝜈2𝑘

(2𝑘)!

∞
𝑘=0 = 𝑐𝑜𝑠ℎ 𝜈.   

The Ex-S to Example 1 when ς = 2 is Ξ(ν, ϖ) = ϖ cosh ν. 
Similarly, STDM can be used to derive the ϖ-space solution as  
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ℑ𝜛
𝜍

𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜈2 𝛯(𝜈, 𝜛) − 𝛯(𝜈, 𝜛) = 0, 1<𝜍 ≤ 2,           (12)                          

with the I-Cs: 

𝛯(𝜈, 0) = 𝜈, 𝛯𝜛(𝜈, 0) = 0.                                                          (13)      

Thus, the series-form solution of Eq. (12) is obtained. 

𝛯(𝜈, 𝜛) = 𝜈 (1 +
𝜛𝜍

𝛤(𝜍+1)
+

𝜛2𝜍

𝛤(2𝜍+1)
+

𝜛3𝜍

𝛤(3𝜍+1)
+

𝜛4𝜍

𝛤(4𝜍+1)
+

𝜛5𝜍

𝛤(5𝜍+1)
+ ⋯ ).  

In the case when ς = 2, then the solution through STDM is 

Ξ(ν, ϖ) = ν cosh ϖ. 
Example 2. Consider the ν-space fractional-order HH-E. 

ℑ𝜈
𝜍

𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛) + 5𝛯(𝜈, 𝜛, 𝜆) = 0,                     (14)         

with the I-Cs 

𝛯(0, 𝜛) = 𝜛, 𝛯𝜈(0, 𝜛) = 0.                                                       (15)        

Applying the Sh-T of Eq. (14), and making some calculations 
as a result, we get the following: 

𝑆[𝛯(𝜈, 𝜛)] =
𝜂

𝜇
𝜛 − (

𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛)] −

5 (
𝜂

𝜇
)

𝜍

𝑆[𝛯(𝜈, 𝜛)],                (16) 

Taking the inverse Sh-T on Eq. (16), we have 

𝛯(𝜈, 𝜛) = 𝑆−1[
𝜂

𝜇
𝜛] − 𝑆−1[(

𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛)]] −

5𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[𝛯(𝜈, 𝜛)]].                                                                (17) 

Implementing ADM in Eq. (17), therefore, supposes that the 
solution of Eq. (14) can be represented in the following form: 

𝛯(𝜈, 𝜛) = ∑ 𝛯𝜅(𝜈, 𝜛)∞
𝜅=0 .                                                          (18)       

∑ 𝛯𝜅(𝜈, 𝜛)∞
𝜅=0 = 𝑆−1[

𝜂

𝜇
𝜛] −

𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2
∑ 𝛯𝜅(𝜈, 𝜛)∞

𝜅=0 ]] −

 5𝑆−1[(
𝜂

𝜇
)

𝜍

𝑆[∑ 𝛯𝜅(𝜈, 𝜛)∞
𝜅=0 ]].  

By using the procedure as explained in the previous section, 
we get the following terms for the series solution: 

𝛯0(𝜈, 𝜛) = 𝑆−1 [
𝜂

𝜇
(𝜛)],  

𝛯0(𝜈, 𝜛) = 𝜛.  

𝛯1(𝜈, 𝜛) = (−5)𝜛
𝜈𝜍

𝛤(𝜍+1)
.  

𝛯2(𝜈, 𝜛) = (−5)2𝜛
𝜈2𝜍

𝛤(2𝜍+1)
.  

𝛯3(𝜈, 𝜛) = (−5)3𝜛
𝜈3𝜍

𝛤(3𝜍+1)
.  

𝛯4(𝜈, 𝜛) = (−5)4𝜛
𝜈4𝜍

𝛤(4𝜍+1)
.  

𝛯5(𝜈, 𝜛) = (−5)5(𝜛 + 𝜆)
𝜈5𝜍

𝛤(5𝜍+1)
.  

The series forms a solution to the given problem, and we have 

𝛯(𝜈, 𝜛) = 𝜛 + (−5)𝜛
𝜈𝜍

𝛤(𝜍+1)
+ (−5)2𝜛

𝜈2𝜍

𝛤(2𝜍+1)
+

(−5)2𝜛
𝜈3𝜍

𝛤(3𝜍+1)
+ (−5)2𝜛

𝜈4𝜍

𝛤(4𝜍+1)
+ (−5)2𝜛

𝜈5𝜍

𝛤(5𝜍+1)
+ ⋯ . 

𝛯(𝜈, 𝜛) = 𝜛 (1 +
(−5𝜈𝜍)

𝛤(𝜍+1)
+

(−5𝜈𝜍)2

𝛤(2𝜍+1)
+

(−5𝜈𝜍)3

𝛤(3𝜍+1)
+

(−5𝜈𝜍)4

𝛤(4𝜍+1)
+

(−5𝜈𝜍)5

𝛤(5𝜍+1)
+ ⋯ ).  

We can determine the Ex-S to Eq. (14) with respect to I-Cs by 
using the ML-F 

𝛯(𝜈, 𝜛) = 𝜛𝐸𝜍(−5𝜈𝜍). 

If 𝜍 = 2, then 

𝐸2(−5𝜈2) = ∑
(−5𝜈2)

𝑘

𝛤(2𝑘+1)

∞
𝑘=0 = ∑

(−1)𝜅(√5𝜈)
2𝑘

𝛤(2𝑘+1)

∞
𝑘=0 =

∑
(−1)𝜅(√5𝜈)

2𝑘

(2𝑘)!

∞
𝑘=0 = 𝑐𝑜𝑠ℎ √5 𝜈.   

The Ex-S to Example 2 when ς = 2 is Ξ(ν, ϖ) =

ϖ cosh √5 ν. Similarly, STDM can be used to derive the ϖ-
space solution as   

ℑ𝜛
𝜍

𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜈2 𝛯(𝜈, 𝜛) + 5𝛯(𝜈, 𝜛, 𝜆) = 0,                     (19)            

with the I-Cs 

𝛯(𝜈, 0) = 𝜈, 𝛯𝜛(𝜈, 0) = 0.                                                          (20)     

Thus, the series-form solution of Eq. (19) is obtained. 

𝛯(𝜈, 𝜛) = 𝜈 (1 +
(−5𝜛𝜍)

𝛤(𝜍+1)
+

(−5𝜛𝜍)2

𝛤(2𝜍+1)
+

(−5𝜛𝜍)3

𝛤(3𝜍+1)
+

(−5𝜛𝜍)4

𝛤(4𝜍+1)
+

(−5𝜛𝜍)5

𝛤(5𝜍+1)
+ ⋯ ).  

In the case when ς = 2, then the solution through STDM is 

Ξ(ν, ϖ) = ν cosh √5 ϖ. 
Example 3. Consider the ν-space fractional-order HH-E. 

ℑ𝜈
𝜍

𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛) − 2𝛯(𝜈, 𝜛, 𝜆) = (12𝜈2 −

3𝜈4) 𝑠𝑖𝑛 𝜛 , 1<𝜍 ≤ 2, 0<𝜛 ≤ 2𝜋,                                              (21)          

with the I-Cs 

𝛯(0, 𝜛) = 0, 𝛯𝜈(0, 𝜛) = 0.                                                             (22) 

Applying the Sh-T to Eq. (21), we use the differentiation prop-
erty of the Sh-T, and after some calculation, as a result, we get as 
follows: 

𝑆[𝛯(𝜈, 𝜛)] = − (
𝜂

𝜇
)

𝜍
𝑆[

𝜕2

𝜕𝜛2 𝛯(𝜈, 𝜛)] + 2 (
𝜂

𝜇
)

𝜍
𝑆[𝛯(𝜈, 𝜛)] +

(
𝜂

𝜇
)

𝜍
(12 × 2! (

𝜇

𝜂
)

3
−  3 × 4! (

𝜇

𝜂
)

4
) 𝑠𝑖𝑛 𝜛.                                   (23)                                                   

Taking the inverse Sh-T on Eq. (23), we have 

𝛯(𝜈, 𝜛) = 𝑆−1[− (
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2
𝛯(𝜈, 𝜛)]

+ 𝑆−1[2 (
𝜂

𝜇
)

𝜍

𝑆[𝛯(𝜈, 𝜛)] 

+𝑆−1[(
𝜂

𝜇
)

𝜍

(12 × 2! (
𝜇

𝜂
)

3

− 3 × 4! (
𝜇

𝜂
)

4

) 𝑠𝑖𝑛 𝜛].              (24)                                                                          

Implementing ADM in Eq. (24), therefore, supposes that the 
solution of Eq. (21) can be represented in the following form: 
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𝛯(𝜈, 𝜛) = ∑ 𝛯𝜅(𝜈, 𝜛)∞
𝜅=0 .                                                           (25)      

∑ 𝛯𝜅(𝜈, 𝜛)

∞

𝜅=0

= 𝑆−1[− (
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2
∑ 𝛯𝜅(𝜈, 𝜛)

∞

𝜅=0

]] 

+𝑆−1[2 (
𝜂

𝜇
)

𝜍

𝑆[∑ 𝛯𝜅(𝜈, 𝜛)

∞

𝜅=0

]] + 

𝑆−1[(
𝜂

𝜇
)

𝜍

(12 × 2! (
𝜇

𝜂
)

3

− 3 × 4! (
𝜇

𝜂
)

4

) 𝑠𝑖𝑛 𝜛].                  (26)                     

By using the procedure as explained in the previous section, 
we get the following terms for the series solution: 

𝛯0(𝜈, 𝜛) = 𝑆−1[(
𝜂

𝜇
)

𝜍

(12 × 2! (
𝜇

𝜂
)

3

− 3 × 4! (
𝜇

𝜂
)

4

) 𝑠𝑖𝑛 𝜛], 

𝛯0(𝜈, 𝜛) = (12𝜈2 − 3𝜈4) 𝑠𝑖𝑛 𝜛. 

𝛯1(𝜈, 𝜛) = 𝑆−1[− (
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2
𝛯0(𝜈, 𝜛)]] + 

𝑆−1[2 (
𝜂

𝜇
)

𝜍

𝑆[𝛯0(𝜈, 𝜛)]], 

𝛯1(𝜈, 𝜛) = (72
𝜈𝜍+2

𝛤(𝜍+2)
−

216𝜈𝜍+4

𝛤(𝜍+4)
) 𝑠𝑖𝑛 𝜛. 

𝛯2(𝜈, 𝜛) = 𝑆−1[− (
𝜂

𝜇
)

𝜍

𝑆[
𝜕2

𝜕𝜛2 𝛯1(𝜈, 𝜛)]] +

𝑆−1[2 (
𝜂

𝜇
)

𝜍

𝑆[𝛯1(𝜈, 𝜛)]]. 

𝛯2(𝜈, 𝜛) = (
216𝜈2𝜍+2

𝛤(2𝜍+2)
−

648𝜈2𝜍+4

𝛤(2𝜍+4)
) 𝑠𝑖𝑛 𝜛. 

𝛯3(𝜈, 𝜛) = (
648𝜈3𝜍+2

𝛤(3𝜍+2)
−

1944𝜈3𝜍+4

𝛤(3𝜍+4)
) 𝑠𝑖𝑛 𝜛. 

𝛯4(𝜈, 𝜛) = (
1944𝜈4𝜍+2

𝛤(4𝜍+2)
−

5842𝜈4𝜍+4

𝛤(4𝜍+4)
) 𝑠𝑖𝑛 𝜛. 

𝛯5(𝜈, 𝜛) = (
5832𝜈5𝜍+2

𝛤(4𝜍+2)
−

17496𝜈5𝜍+4

𝛤(4𝜍+4)
) 𝑠𝑖𝑛 𝜛. 

The series forms a solution to the given problem, and we have 

𝛯(𝜈, 𝜛) = (12𝜈2 − 3𝜈4) 𝑠𝑖𝑛 𝜛 + (
216𝜈2𝜍+2

𝛤(2𝜍+2)
−

648𝜈2𝜍+4

𝛤(2𝜍+4)
) 𝑠𝑖𝑛 𝜛 + (

648𝜈3𝜍+2

𝛤(3𝜍+2)
−

1944𝜈3𝜍+4

𝛤(3𝜍+4)
) 𝑠𝑖𝑛 𝜛 +

(
1944𝜈4𝜍+2

𝛤(4𝜍+2)
−

5842𝜈4𝜍+4

𝛤(4𝜍+4)
) 𝑠𝑖𝑛 𝜛 + (

5832𝜈5𝜍+2

𝛤(4𝜍+2)
−

17496𝜈5𝜍+4

𝛤(4𝜍+4)
) 𝑠𝑖𝑛 𝜛 ⋯.. 

The Ex-S to Example 3 when ς = 2 is Ξ(ν, ϖ) =
9ν4 sin ϖ + 12ν2 sin ϖ. Similarly, STDM can be used to derive 
the ϖ -space solution as 

ℑ𝜛
𝜍

𝛯(𝜈, 𝜛) +
𝜕2

𝜕𝜈2
𝛯(𝜈, 𝜛) − 2𝛯(𝜈, 𝜛, 𝜆) 

= (12𝜛2 − 3𝜛4) 𝑠𝑖𝑛 𝜈 , 1<𝜍 ≤ 2, 0<𝜈 ≤ 2𝜋, 
 

with the I-Cs 

𝛯(𝜈, 0) = 0, 𝛯𝜛(𝜈, 0) = 0. 

Thus, the series-form solution of ϖ-space problem is ob-
tained. 

𝛯(𝜈, 𝜛) = (12𝜛2 − 3𝜛4) 𝑠𝑖𝑛 𝜈 + (
216𝜛2𝜍+2

𝛤(2𝜍+2)
−

648𝜛2𝜍+4

𝛤(2𝜍+4)
) 𝑠𝑖𝑛 𝜈 + (

648𝜛3𝜍+2

𝛤(3𝜍+2)
−

1944𝜛3𝜍+4

𝛤(3𝜍+4)
) 𝑠𝑖𝑛 𝜈 +

(
1944𝜛4𝜍+2

𝛤(4𝜍+2)
−

5842𝜛4𝜍+4

𝛤(4𝜍+4)
) 𝑠𝑖𝑛 𝜈 + (

5832𝜛5𝜍+2

𝛤(4𝜍+2)
−

17496𝜛5𝜍+4

𝛤(4𝜍+4)
) 𝑠𝑖𝑛 𝜈 ⋯. 

In the case when ς = 2, then the solution through STDM 

is (ν, ϖ) = 9ϖ4 sin ν + 12ϖ2 sin ν. 

5. GRAPHICAL AND NUMERICAL RESULTS WITH DISCUS-
SION 

In this section, we assess the numerical and graphic out-
comes of the App-S and Ex-S to the models discussed in Exam-
ples 1, 2, and 3. The precision and efficiency of the approximate 
approach can be assessed using error functions. An approximate 
analytical solution is provided by STDM in terms of an infinite 
fractional power series, and the approximate solution's errors 
must be specified. Rec-Er, Abs-Er, and Rel-Er functions are the 
functions that we use to illustrate the precision and efficiency of 
STDM. 

The Abs-Er, Rel-Er, and Rec-Er are defined as follows:  

Ξ(ν, ϖ) ≈ Ξκ(ν, ϖ), κ = 1,2,3, .  .  .. 

where,  Ξκ(ν, ϖ) and Ξ(ν, ϖ) are the κth-step App-S and Ex-S 
respectively. 

The Abs-Er for the κth-step App-S is calculated as 

Abs. Erκ= |Ξ(ν, ϖ) − Ξκ(ν, ϖ) |. 

The Rel-Er for the κth-step App-S is calculated as 

Rel. Erκ=
|Ξ(ν,ϖ)−Ξκ(ν,ϖ) |

|Ξ(ν,ϖ) |
. 

The Rec-Er for the κth-step App-S is calculated as 

Rec. Errorκ=|Ξκ+1(ν, ϖ) − Ξκ(ν, ϖ)|. 

The two-dimensional graphs of the App-S acquired from five 
iterations and the Ex-S derived by STDM for ς =
1.6, 1.7, 1.8, 1.9 and 2 are shown in Figures 1 of Examples 1–3. 

These graphs show how, when ζ → 2 occurs, the App-S con-
verges to the Ex-S. The App-S interaction with the Ex-S when ζ =
2 occurs demonstrates the accuracy of the proposed approach. 

The Abs-E and Rel-E in the interval νϵ[0,1] between the Ex-

S and fifth-order App-S derived by STDM in Problems 1–3 at ς =
2 are shown in graphs 2 and 3 respectively. The graphs demon-
strate that the App-S and Ex-S are almost in agreement, which 
attests to the STDM's efficiency. 

Tables 1–3 display Abs-Er at reasonable nominated grid 
points in the interval υ ∈ [0, 1] amongst the 5th-step App-S and 

Ex-S attained using STDM of Examples 1, 2, and 3 at ς =
1.6, 1.7, 1.8, 1.9 and 2. From Tables 1–3, we observe that the 
Abs-Er for test examples for all FOD is very small. If we increase 
the order of the FOD of the 5th-step App-S, the Abs-Er further 
decreases. 

The convergence of the App-S to the Ex-S for Examples 1, 2, 
and 3 is shown numerically with the help of Rec-Er at reasonable 

nominated grid points in the interval ν ϵ [0,1], as shown in Tables 

4–9. We see from Tables 4–9 that, on increasing the order of the 
FOD, the 5th-step App-S obtained by the proposed approach 
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converges rapidly to the Ex-S. We can see from Tables 4–6 that 
there is a very minor Abs-Er for all of the test problems for 4th-
step App-S. We see from Tables 7–9 that, considering the 5th-
step App-S results in an even smaller Rec-Er, since our suggest-
ed approach is accurate, as seen by this process of Rec-Er, the 
App-S is rapidly approaching the Ex-S. Thus, we deduce that the 
suggested approach is a useful and efficient approach for solving 
FODE with a reduced number of computations and iteration steps. 

The graphs and tables show that the App-S and Ex-S agree, 
confirming the effectiveness of the recommended approach. 
Therefore, based on Figures 1-3 and Tables 1–9, we deduce that 
STDM provides us with a solution in a fractional power series that 
has a small error. 

The following are the 2D graphs showing the Ξ(ν, ϖ) and 

Ξ5(ν, ϖ) at ς = 1.6, 1.7, 1.8, 1.9 and 2 in the interval ν ∈
[0, 1] for Examples 1, 2, and 3.  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 1.   The 5th-step App-S and Ex-S at ς = 1.6, 1.7, 1.8, 1.9, and 2 for 
Example 1, 2 and 3. (a): Example 1 when ϖ = 0.25 , (b): Ex-

ample 2 when ϖ = 0.15, (c): Example 3 ϖ = 1. 

The following are the 2D graphs showing the Abs-Er of 

Ξ(ν, ϖ) and Ξ5(ν, ϖ) at ς = 2 in the interval ν ∈ [0, 1] for 
Examples 1, 2, and 3.  

 
(a) 

 
(b) 

 
(c)  

Fig. 2:  The Abs-Er of Examples 1, 2, and 3. (a): Example 1 when ϖ =
0.25 , (b): Example 2 when ϖ = 0.15, (c): Example 3 ϖ = 1. 

The following are the 2D graphs showing the Rel-Er of 

Ξ(ν, ϖ) and Ξ5(ν, ϖ) at ς = 2 in the interval ν ∈ [0, 1] for 
Examples 1, 2, and 3. 

 
(a) 
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(b) 

 
(c) 

 

Fig. 3.   The Rel-Er of Examples 1, 2, and 3. (a): Example 1 when ϖ =
0.25 , (b): Example 2 when ϖ = 0.15, (c): Example 3 ϖ = 1 

Tab. 1. The Abs-Er for Ξ5(ν, ϖ) when ϖ = 0.25 in Example 1 for  

   ς = 1.7,1.8, 1.9 and 2.0 

𝝂 𝝇 = 𝟏. 𝟕 𝝇 = 𝟏. 𝟖 𝝇 = 𝟏. 𝟗 𝝇 = 𝟐. 𝟎 

0.1 0.00198 0.00111 0.00047 0 

0.2 0.00557 0.00327 0.00144 0 

0.3 0.00998 0.00598 0.00269 2.775 × 10−16 

0.4 0.01493 0.00908 0.00415 8.715 × 10−15 

0.5 0.02029 0.01248 0.00576 1.275 × 10−13 

0.6 0.02602 0.01612 0.00751 1.138 × 10−12 

0.7 0.03209 0.020007 0.00937 7.243 × 10−12 

0.8 0.03852 0.02411 0.01135 3.599 × 10−11 

0.9 0.04533 0.02847 0.01344 1.480 × 10−10 

1.0 0.05257 0.03310 0.01567 5.247 × 10−10 

Tab. 2. The Abs-Er for Ξ5(ν, ϖ) when ϖ = 0.15 in Example 2 for  

   ς = 1.7,1.8, 1.9 and 2.0 

𝝂 
𝝇
= 𝟏. 𝟕 

𝝇 = 𝟏. 𝟖 𝝇 = 𝟏. 𝟗 𝝇 = 𝟐. 𝟎 

0.1 0.00580 0.00328 0.00139 0 

0.2 0.01520 0.00909 0.00407 2.00117700 × 10−14 

0.3 0.02431 0.01516 0.00704 2.59392507 × 10−12 

0.4 0.03092 0.02005 0.00964 8.17310941 × 10−11 

0.5 0.03361 0.02273 0.01134 1.1864156 × 10−9 

0.6 0.03158 0.02252 0.01175 1.0546420 × 10−8 

0.7 0.02466 0.01909 0.01062 6.6822825 × 10−8 

0.8 0.01324 0.01244 0.00788 3.30409738 × 10−7  

0.9 0.00182 0.00295 0.00357 0.000001351 

1.0 0.01922 0.00872 0.002042 0.0000047612 

Tab. 3. The Abs-Er for Ξ5(ν, ϖ) when ϖ = 1 in Example 3 for  

   ς = 1.7,1.8, 1.9 and 2.0 

𝝂 𝝇 = 𝟏. 𝟕 𝝇 = 𝟏. 𝟖 𝝇 = 𝟏. 𝟗 𝝇 = 𝟐. 𝟎 

0.1 4.4 × 10−3 4.3 × 10−3 4.1 × 10−4 0 

0.2 4.5 × 10−3 4.4 × 10−3 4.0 × 10−4 0 

0.3 4.6 × 10−3 4.5 × 10−3 7.0 × 10−4 1.5 × 10−17 

0.4 4.7 × 10−3 4.6 × 10−3 9.6 × 10−4 1.71 × 10−16 

0.5 4.8 × 10−3 4.7 × 10−3 1.1 × 10−4 1.98 × 10−15 

0.6 4.9 × 10−3 4.8 × 10−3 1.1 × 10−4 2.05 × 10−14 

0.7 5.0 × 10−3 4.9 × 10−3 1.0 × 10−4 2.08 × 10−13 

0.8 5.1 × 10−3 5.0 × 10−3 7.8 × 10−4 2.09 × 10−11 

0.9 5.2 × 10−3 5.1 × 10−3 3.5 × 10−4 2.31 × 10−11 

1.0 5.3 × 10−3 5.2 × 10−3 2.0 × 10−4 2.39 × 10−11 

Tab. 4. The Rec-Er for Ξ4(ν, ϖ) when ϖ = 0.25 for ς =
  1.7,1.8, 1.9 and 2.0 for Example 1 

𝝂 𝝇 = 𝟏. 𝟕 𝝇 = 𝟏. 𝟖 𝝇 = 𝟏. 𝟗 𝝇 = 𝟐. 𝟎 

0.1 1.17 × 10−11 2.0 × 10−12 3.6 × 10−13 6.2 × 10−14 

0.2 1.3 × 10−9 3.0 × 10−10 7.0 × 10−11 1.5 × 10−11 

0.3 2.0 × 10−8 5.6 × 10−9 1.5 × 10−9 4.0 × 10−10 

0.4 1.4 × 10−7 4.5 × 10−8 1.3 × 10−8 4.0 × 10−9 

0.5 3.0 × 10−8 2.2 × 10−7 7.4 × 10−8 2.4 × 10−8 

0.6 6.4 × 10−9 8.3 × 10−7 2.9 × 10−7 1.0 × 10−7 

0.7 6.5 × 10−6 2.5 × 10−6 9.6 × 10−7 3.5 × 10−7 

0.8 1.6 × 10−5 6.6 × 10−6 2.6 × 10−6 1.0 × 10−6 

0.9 3.6 × 10−5 1.5 × 10−5 6.4 × 10−6 2.6 × 10−6 

10 7.4 × 10−5 3.3 × 10−5 1.4 × 10−5 6.2 × 10−6 

Tab. 5. The Rec-Er for Ξ4(ν, ϖ) when ϖ = 0.15 for ς =
  1.7,1.8, 1.9 and 2.0 for Example 2 

𝜈 𝜍 = 1.7 𝜍 = 1.8 𝜍 = 1.9 𝜍 = 2.0 

0.1 4.3 × 10−9 7.8 × 10−10 1.3 × 10−10 2.3 × 10−11 

0.2 4.9 × 10−7  1.1 × 10−7 2.6 × 10−8 5.9 × 10−9  

0.3 7.7 × 10−6  2.1 × 10−6 5.7 × 10−7 1.5 × 10−7 

0.4 5.4 × 10−5  1.6 × 10−5 5.1 × 10−6 1.5 × 10−6 

0.5 2.4 × 10−4  8.4 × 10−5 2.7 × 10−6 9.0 × 10−6 

0.6 8.6 × 10−4  3.1 × 10−4 1.1 × 10−4 3.9 × 10−5 

0.7 2.4 × 10−3  9.5 × 10−4 3.6 × 10−4 1.3 × 10−4 

0.8 6.0 × 10−3  2.4 × 10−3 9.9 × 10−4 3.9 × 10−4 

0.9 1.3 × 10−2  5.8 × 10−3 2.4 × 10−3 1.0 × 10−3 

10 2.7 × 10−2  1.2 × 10−2 5.4 × 10−3 2.3 × 10−3 

Tab. 6. The Rec-Er for Ξ4(ν, ϖ) when ϖ = 1 for ς = 1.7,1.8, 1.9 and 

  2.0 for Example 3 

𝝂 𝝇 = 𝟏. 𝟕 𝝇 = 𝟏. 𝟖 𝝇 = 𝟏. 𝟗 𝝇 = 𝟐. 𝟎 

0.1 9.8 × 10−11 1.6 × 10−11 2.7 × 10−12 4.5 × 10−13 

0.2 4.3 × 10−8 9.7 × 10−9 2.1 × 10−9 4.6 × 10−10 

0.3 1.5 × 10−6 4.0 × 10−7 1.0 × 10−7 2.6 × 10−8 

0.4 1.9 × 10−5 5.7 × 10−6 1.6 × 10−6 4.7 × 10−7 

0.5 1.3 × 10−4 4.4 × 10−5 1.4 × 10−5 4.3 × 10−6 

0.6 6.8 × 10−4 2.3 × 10−4 8.0 × 10−5 2.6 × 10−5 

0.7 2.6 × 10−3 9.7 × 10−4 3.5 × 10−4 1.2 × 10−4 

0.8 8.5 × 10−3 3.3 × 10−3 1.2 × 10−3 4.7 × 10−4 

0.9 2.3 × 10−2 9.7 × 10−3 3.9 × 10−3 1.5 × 10−3 

10 5.9 × 10−2 2.5 × 10−2 1.0 × 10−2 9.0 × 10−2 
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Tab. 7. The Rec-Er for Ξ5(ν, ϖ) when ϖ = 0.25 for ς =
  1.7,1.8, 1.9 and 2.0 for Example 1 

𝝂 𝝇 = 𝟏. 𝟕 𝝇 = 𝟏. 𝟖 𝝇 = 𝟏. 𝟗 𝝇 = 𝟐. 𝟎 

0.1 6.6 × 10−15 6.8 × 10−16 6.9 × 10−17 6.8 × 10−18 

 

0.2 2.3 × 10−12 3.5 × 10−13 
 5.0 × 10−14 7.0 × 10−15 

0.3 7.5 × 10−11 1.3 × 10−11 2.3 × 10−12 4.0 × 10−13 

0.4 8.6 × 10−10 1.8 × 10−10 3.6 × 10−11 7.2 × 10−12 

0.5 5.7 × 10−9 1.3 × 10−9 3.0 × 10−10 6.7 × 10−11 

0.6 2.7 × 10−8 6.9 × 10−9 1.7 × 10−9 4.1 × 10−10 

0.7 1.0 × 10−7 2.7 × 10−8 7.4 × 10−9 1.9 × 10−9 

0.8 3.1 × 10−7 9.2 × 10−8 2.6 × 10−8 7.3 × 10−9 
0.9 8.5 × 10−7 2.6 × 10−7 8.1 × 10−8 2.4 × 10−8 

10 2.0 × 10−6 6.8 × 10−7 2.2 × 10−7 6.8 × 10−8 

Tab. 8. The Rec-Er for Ξ5(ν, ϖ) when ϖ = 0.15 for ς =
  1.7,1.8, 1.9 and 2.0 for Example 2 

𝝂 𝝇 = 𝟏. 𝟕 𝝇 = 𝟏. 𝟖 𝝇 = 𝟏. 𝟗 𝝇 = 𝟐. 𝟎 

0.1 1.2 × 10−11 1.2 × 10−12 1.3 × 10−13 1.2 × 10−14 

0.2 4.4 × 10−9 6.6 × 10−10 9.4 × 10−11 1.3 × 10−11 

0.3 1.4 × 10−7 2.5 × 10−8 4.4 × 10−9 7.6 × 10−10 

0.4 1.6 × 10−6 3.3 × 10−7 6.8 × 10−8 1.3 × 10−8 

0.5 1.0 × 10−5 2.5 × 10−6 5.7 × 10−7 1.2 × 10−7 

0.6 5.1 × 10−5 1.3 × 10−5 3.2 × 10−7 7.8 × 10−7 

0.7 1.8 × 10−4 5.2 × 10−5 1.3 × 10−5 3.6 × 10−6 

0.8 5.8 × 10−4 1.7 × 10−4 4.9 × 10−5 1.3 × 10−5 

0.9 1.6 × 10−3 5.0 × 10−4 1.5 × 10−4 4.5 × 10−5 

10 3.9 × 10−3 1.2 × 10−3 4.1 × 10−4 1.2 × 10−4 

Ta. 9. The Rec-Er for Ξ5(ν, ϖ) when ϖ = 1 for ς = 1.7,1.8, 1.9 and 

2.0 for Example 3 

𝝂 𝝇 = 𝟏. 𝟕 𝝇 = 𝟏. 𝟖 𝝇 = 𝟏. 𝟗 𝝇 = 𝟐. 𝟎 

0.1 1.3 × 10−13 1.3 × 10−14 1.3 × 10−15 1.2 × 10−16 

0.2 1.9 × 10−10 2.7 × 10−11 3.7 × 10−12 5.0 × 10−13 

0.3 1.3 × 10−8 2.3 × 10−9 3.9 × 10−10 6.5 × 10−11 

0.4 2.8 × 10−7 5.× 10−8 1.0 × 10−8 2.0 × 10−9 

0.5 2.9 × 10−6 6.5 × 10−7 1.4 × 10−7 2.9 × 10−8 

0.6 2.0 × 10−5 4.8 × 10−6 1.1 × 10−6 2.× 10−7 

0.7 1.0 × 10−4 2.6 × 10−5 6.7 × 10−6 1.6 × 10−6 

0.8 4.0 × 10−4 1.1 × 10−4 3.1 × 10−5 8.3 × 10−6 

0.9 1.4 × 10−3 4.1 × 10−4 1.2 × 10−4 3.4 × 10−5 

10 4.2 × 10−3 1.3 × 10−3 4.0 × 10−4 2.5 × 10−5 

6. CONCLUSION 

In order to obtain both approximate and exact solutions for the 
Helmholtz problems in the sense of space CFD, a coupling ap-
proach has been employed in this study. An analysis in the form 
of absolute, relative, and recurrence errors by graphical and nu-
merically means has been done to illustrate the correctness of our 
approach. For different values of fractional order derivatives, 2D 
graphs are also established that show the convergence of the 
approximate solution to the exact solution. These graphs show 
how, when ς → 2 occurs, the approximate solution converges to 
the exact solution. The approximate interaction with the exact 
solution when ς = 2 occurs demonstrates the accuracy and 
efficacy of the proposed approach. 

The STDM distinguishes itself from other approximate analyti-
cal methods with the following features: The advantage of this 

method is that it does not call for any presumptions regarding 
significant or minor physical factors. Because of this, it circum-
vents some of the drawbacks of conventional perturbation tech-
niques. In contrast to earlier analytic approximation methods, the 
STDM may generate expansion solutions for FODEs without the 
need for perturbation, linearization, or discretization. In light of the 
outcomes, we concluded that STDM is straightforward to use, 
precise, and effective. We intend to use the STDM in the future to 
solve diverse nonlinear fractional models that arise in engineering 
and biological systems. 
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