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Abstract: The work concerns a sandwich beam with an individual core structure giving a shear effect exactly in accordance to the "broken 
line" theory. According to the general theoretical scheme of a planar cross section deformation, longitudinal displacements, strains  
and stresses are analytically formulated. Moreover, the unknown deformation function of the core, with consideration of the classical shear 
stress formula, is analytically derived. Based on the condition regarding the linear deformation function of the core, according to  
the “broken line” theory, the differential equation is obtained. The solution of this equation is the sought individual core structure.  
Then, the bending problem of a clamped sandwich beam under three-point bending is studied.  
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1. INTRODUCTION 

Sandwich structures initiated in the 20th century are contem-
porary intensively developed and improved. Carrera [1] presented 
a detailed review of theories used in analytical modeling of multi-
layer structures, in particular Zig-Zag theory, taking into account 
138 publications, including three from the 19th century. Mag-
nucka-Blandzi and Magnucki [2] developed an analytical model of 
a simply supported sandwich beam with symmetrically varying 
mechanical properties of the core at its depth and determined the 
critical load of this beam. Based on the formulated optimization 
criterion with consideration of the critical load, the dimensionless 
effective parameters of the example beam were determined. 
Carrera and Brischetto [3], taking into account selected important 
articles on modeling layered structures, pointed out the ad-
vantages and certain imperfections of the theories used, present-
ing five comparative problems. They identified two main sources 
of error: geometric parameters  (the length-to-thickness -ratio 
LTR) and mechanical parameters (the face-to-core-stiffness-ratio 
FCRS). Demasi [4] presented an extension of the generalized 
unified formulation (GUF) to the theory of higher order shear 
deformation considering thick-layer structures, taking into account 
the Advanced Higher Order Shear Deformation Theory and a 
fourth-order fully Zig-Zag theories. Grygorowicz et al [5] studied 
the sandwich beam buckling problem analytically and numerically 
with FEM. The mechanical properties of the core of this beam 
varied symmetrically along its depth. The analytical model of this 
beam takes into account linear and nonlinear shear deformation 
theory. Detailed critical load tests were carried out on sample 
beams. Sayyad and Ghugal [6] presented a detailed, comprehen-
sive review of publications on bending, buckling and free vibration 
of sandwich beams, taking into account 515 works, from the 18-th 
century to the present, related to these problems. Kędzia and 
Smyczyński [7] analytically investigated the buckling problem of a 

rectangular polyethylene sandwich plate subjected to a magnetic 
field. The analytical model of this plate was developed taking into 
account the the “broken line” theory. Critical loads and dynamic 
equilibrium paths for example plates were determined. Paczos et 
al. [8] studied analytically and experimentally the three-point 
bending of simply supported sandwich beams with an individual 
structure of the honeycomb core. This beam was manufactured 
using additive technology, and the elastic modulus of the core 
varied along its entire length. The test results determined using 
these two methods were compared with each other. Magnucka-
Blandzi [9] developed an analytical model of a seven-layer beam 
with three-layer cladding. The central core and cladding cores are 
wavy structures. Detailed deflection and buckling tests were per-
formed for the translated family of beams. Marczak [10] presented 
an analytical study of the vibration problem of sandwich panels 
with periodic facings, taking into account the broken line hypothe-
sis. He examined the vibration problems of this plate taking into 
account two tolerance models and, based on the analysis of the 
calculation results, he indicated an easier and more precise model 
that contains fewer governing equations with fewer coefficients. 
Magnucki et al. [11] studied analytically and numerically FEM the 
bending problem of a simply supported homogeneous beam with 
a bisymmetric cross section under a generalized load. The analyt-
ical model of this beam was elaborated with consideration of the 
classical shear stress formula – called the Zhuravsky shear 
stress. Detailed calculations of the maximum deflection of the 
beam with sample cross sections were carried out using these two 
methods and their results were compared with each other. Icardi 
and Urraci [12] developed a generalization of physically-based 
fixed degrees of freedom 3-D zig-zag theories. The aim of this 
work was to prove that the choice of global and layerwise func-
tions is immaterial whenever coefficients are recalculated exactly 
(via symbolic calculus) by the enforcement of interfacial stress 
continuity, boundary conditions and equilibrium in point form, as 
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prescribed by the elasticity theory. Sharei et al. [13] experimental-
ly and numerically investigated the impact of low speeds on 
sandwich panels with a foam core reinforced with short hybrid 
fibers. They experimentally demonstrated a significant impact of 
core reinforcement with carbon, aramid and carbon-aramid hybrid 
fibers on the Young's modulus value from 100 to 180 percent. 
FEM numerical tests confirmed the experimental results, the 
differences amounted to approximately 9.1 percent. Montazeri 
and Safarabadi [14]  conducted comparative tests on the mechan-
ical properties of composite laminates to demonstrate the influ-
ence of hybridization of cut glass fibers and kenaf fibers of their 
core. They determined that the kenaf core laminate had the high-
est dent resistance and the best properties due to the energy 
absorbed. Moreover, the performed FEM numerical tests showed 
quite good agreement with the experimental results. Magnucki et 
al. [15] developed three analytical models of a sandwich beam 
and analytically and numerically FEM studied the bending, buck-
ling and free vibration problems of this beam. Magnucki [16] pre-
sented the individual nonlinear deformation theory and its applica-
tion to analytical modeling of homogeneous beams, sandwich 
beams and functionally graded beams. Lewandowski and Litewka 
[17] analytically presented the problem of harmonic vibrations of 
laminated plates in the von Karman geometrically non-linear 
regime, taking into account the refined zigzag theory. Montazeri et 
al. [18] presented experimental and numerical FEM studies of 
three-point bending of beams with six honeycomb structures and 
different Poisson's ratios obtained using 3D printing technology. 
They demonstrated that four novel honeycomb structures, de-
signed by hybridizing hexagonal and re-entrant units, outper-
formed standard conventional honeycomb structures in terms of 
load-bearing capacity. Montazeri et al. [19] investigated experi-
mentally and numerically in FEM the performance of hexagonal 
and concave honeycombs additively manufactured based on 
polylactic acid and thermoplastic polyurethane, subjected to three-
point bending. Conventional and auxetic cellular structures filled 
with polyurethane were created using 3D printing technology. The 
obtained research results indicated positive performance of foam-
filled thermoplastic polyurethane based auxetic structures. Mag-
nucki and Magnucka-Blandzi [20] developed analytical model of 
an asymmetric sandwich beam with consideration of the classical 
shear stress formula, called the Zhuravsky shear stress, and 
analytically studied the bending problem of this beam under uni-
formly distribute load along its length. Magnucki et al. [21] analyti-
cally and numerically studied the banding problem of a sandwich 
beam with stepped layers thicknesses. The effect of this thickness 
stepped on the beam deflection is analyzed.  

The subject of the work is a sandwich beam with a core of an 
individual structure, the influence of which on the deformation 
shape of a planar cross-section is special. The main purpose of 
the work is to analytically determine such a structure of this core 
that the deformation shape of the planar cross-section of this 
beam will be exactly in accordance with the “broken line” theory. 

2. ANALYTICAL MODEL OF THE SANDWICH BEAM 

The cross section of the typical sandwich beam of total depth 

ℎ, faces thicknesses ℎ𝑓, core thickness ℎ𝑐  and width 𝑏 is shown 

in Fig. 1. 

 
Fig. 1. Scheme of the cross section of the sandwich beam 

The Young’s modulus of successive layers is as follows:  

 the upper face-sheet: − 1 2⁄ ≤ 𝜂 ≤ − 𝜒𝑐 2⁄   

𝐸(𝜂) = 𝐸𝑓 = const, (1) 

 the core: − 𝜒𝑐 2⁄ ≤ 𝜂 ≤ 𝜒𝑐 2⁄   

𝐸(𝜂) = 𝐸𝑓 ⋅ 𝑓𝑐(𝜂), (2) 

 the lower face-sheet: 𝜒𝑐 2⁄ ≤ 𝜂 ≤ 1 2⁄   

𝐸(𝜂) = 𝐸𝑓 = const, (3) 

where: 𝜂 = 𝑦 ℎ⁄  – dimensionless coordinate, 𝜒𝑐 = ℎ𝑐 ℎ⁄  – 
dimensionless thicknes of the core, 𝑓𝑐(𝜂) – unknown function of 
variability of Young’s modulus along the thickness of the core 

fulfilling the condition 𝑓𝑐(∓ 𝜒𝑐 2⁄ ) = 𝑒𝑐 , and 𝑒𝑐  – dimensionless 
coefficient of the core Young’s modulus.  

The general theoretical deformation of a planar cross section 
without shear effect in the faces of this beam, according to the 
paper [15], is shown in Fig. 2.  

 
Fig. 2. Scheme of a planar cross section deformation of this beam  
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Considering Fig. 2 longitudinal displacements, strains and 
stresses in successive layers are written in the following form:  

 the upper face-sheet: − 1 2⁄ ≤ 𝜂 ≤ − 𝜒𝑐 2⁄   

𝑢(𝑢𝑓)(𝑥, 𝜂) = −ℎ [𝜂
𝑑𝑣

𝑑𝑥
+ 𝜓𝑓(𝑥)], (4) 

𝜀𝑥
(𝑢𝑓)

(𝑥, 𝜂) = −ℎ [𝜂
𝑑2𝑣

𝑑𝑥2 +
𝑑𝜓𝑓

𝑑𝑥
],    𝛾𝑥𝑦

(𝑢𝑓)
(𝑥, 𝜂) = 0, (5) 

𝜎𝑥
(𝑢𝑓)

(𝑥, 𝜂) = 𝐸𝑓 ⋅ 𝜀𝑥
(𝑢𝑓)

(𝑥, 𝜂),    𝜏𝑥𝑦
(𝑢𝑓)

(𝑥, 𝜂) = 0, (6) 

 the core: − 𝜒𝑐 2⁄ ≤ 𝜂 ≤ 𝜒𝑐 2⁄   

𝑢(𝑐)(𝑥, 𝜂) = −ℎ [𝜂
𝑑𝑣

𝑑𝑥
− 𝑓𝑑

(𝑐)(𝜂) ⋅ 𝜓𝑓(𝑥)], (7) 

𝜀𝑥
(𝑐)(𝑥, 𝜂) = −ℎ [𝜂

𝑑2𝑣

𝑑𝑥2 − 𝑓𝑑
(𝑐)(𝜂) ⋅

𝑑𝜓𝑓

𝑑𝑥
], (8) 

𝛾𝑥𝑦
(𝑐)(𝑥, 𝜂) =

𝑑𝑓𝑑
(𝑐)

𝑑𝜂
⋅ 𝜓𝑓(𝑥), (9) 

𝜎𝑥
(𝑐)(𝑥, 𝜂) = 𝐸𝑓 ⋅ 𝜀𝑥

(𝑐)(𝑥, 𝜂) ⋅ 𝑓𝑐(𝜂), (10) 

𝜏𝑥𝑦
(𝑐)(𝑥, 𝜂) =

𝐸𝑓

2(1+𝜈)
⋅ 𝛾𝑥𝑦

(𝑐)(𝑥, 𝜂) ⋅ 𝑓𝑐(𝜂), (11) 

 the lower face-sheet: 𝜒𝑐 2⁄ ≤ 𝜂 ≤ 1 2⁄   

𝑢(𝑙𝑓)(𝑥, 𝜂) = −ℎ [𝜂
𝑑𝑣

𝑑𝑥
− 𝜓𝑓(𝑥)], (12) 

𝜀𝑥
(𝑙𝑓)

(𝑥, 𝜂) = −ℎ [𝜂
𝑑2𝑣

𝑑𝑥2 −
𝑑𝜓𝑓

𝑑𝑥
],    𝛾𝑥𝑦

(𝑙𝑓)
(𝑥, 𝜂) = 0, (13) 

𝜎𝑥
(𝑙𝑓)

(𝑥, 𝜂) = 𝐸𝑓 ⋅ 𝜀𝑥
(𝑙𝑓)

(𝑥, 𝜂),    𝜏𝑥𝑦
(𝑙𝑓)

(𝑥, 𝜂) = 0, (14) 

where: 𝜓𝑓(𝑥) = 𝑢𝑓(𝑥) ℎ⁄  – dimensionless displacement 

function, 𝑓𝑑
(𝑐)(𝜂) – dimensionless deformation function of the 

core.  

This dimensionless deformation function 𝑓𝑑
(𝑐)(𝜂) of the core 

is formulated with consideration of the paper [16], especially the 
classical shear stress formula – called Zhuravsky shear stress  

𝜏𝑥𝑦
(𝑐𝑙)(𝑥, 𝜂) = 𝑆𝑧

(𝑐)(𝜂)
𝑇(𝑥)

𝑏⋅𝐽𝑧
, (15) 

where: 𝑆𝑧
(𝑐)(𝜂) – first moment of the selected part of the beam 

cross section, 𝑇(𝑥) – shear force, 𝐽𝑧 – inertia moment of the 
cross section.  

Taking into account the papers [15] or [16], the selected part 
of this beam cross section is shown in Fig. 3.  

 
Fig. 3. Scheme of the selected part of this beam cross section  

The first moment of the hatched area of the beam cross 
section (Fig. 3) with consideration of the Young’s modulus is as 
follows:  

𝑆𝑧
(𝑐)(𝜂) = 𝑆𝑧̅

(𝑐)(𝜂) ⋅ 𝑏ℎ2, (16) 

where  

𝑆𝑧̅
(𝑐)(𝜂) =

1

8
(1 − 𝜒𝑐

2) − 𝐽𝑐(𝜂), (17) 

𝐽𝑐(𝜂) = ∫ 𝜂1𝑓𝑐(𝜂1)𝑑𝜂1
𝜂

−𝜒𝑐 2⁄
. (18) 

Equating the shear stress (11) to the classical shear stress 
formula (15) with consideration of the expression (16), after 
transformation, the derivative and the dimensionless function of 
the nonlinear deformation of a planar cross section of the core are 
obtained in forms:  

𝑑𝑓𝑑
(𝑐)

𝑑𝜂
=

1−𝜒𝑐
2−8𝐽𝑐(𝜂)

8𝐶0𝑓𝑐(𝜂)
, (19) 

𝑓𝑑
(𝑐)(𝜂) = ∫

1−𝜒𝑐
2−8𝐽𝑐(𝜂)

8𝐶0𝑓𝑐(𝜂)
𝑑𝜂, (20) 

where 𝐶0 – constant.  
This function according to the “broken line” theory, described 

in the paper [15], satisfies the following conditions:  

𝑑𝑓𝑑
(𝑐)

𝑑𝜂
=

2

𝜒𝑐
,    and    𝑓𝑑

(𝑐)
(∓

𝜒𝑐

2
) = ∓1, (21) 

therefore, the constant 𝐶0 is determined form the condition  

∫
1−𝜒𝑐

2−8𝐽𝑐(𝜂)

8𝐶0𝑓𝑐(𝜂)
𝑑𝜂 = 1

𝜒𝑐 2⁄

0
. (22) 

Based on the expression (19), with consideration of the first 
condition (21), the following equation is formulated  

𝐶0
2

𝜒𝑐
𝑓𝑐(𝜂) =

1

8
(1 − 𝜒𝑐

2) − ∫ 𝜂1𝑓𝑐(𝜂1)𝑑𝜂1
𝜂

−𝜒𝑐 2⁄
. (23) 

Differentiating this equation and after simple transformation, 
the following differential equation is obtained  

𝑑𝑓𝑐

𝑓𝑐(𝜂)
= −

𝜒𝑐

2𝐶0
𝜂. (24) 

The solution of this equation is the subject function of 
variability of Young’s modulus along the thickness of the core in 
the following form  

𝑓𝑐(𝜂) = exp {ln𝑒𝑐 +
𝜒𝑐

4𝐶0
[(

𝜒𝑐

2
)

2

− 𝜂2]}. (25) 

This function satisfies the condition 𝑓𝑐(∓ 𝜒𝑐 2⁄ ) = 𝑒𝑐 .  
Thus, the longitudinal displacements, strains and stresses of 

the core are as follows:  

 the core: − 𝜒𝑐 2⁄ ≤ 𝜂 ≤ 𝜒𝑐 2⁄   

𝑢(𝑐)(𝑥, 𝜂) = −ℎ𝜂 [
𝑑𝑣

𝑑𝑥
−

2

𝜒𝑐
⋅ 𝜓𝑓(𝑥)], (26) 

𝜀𝑥
(𝑐)(𝑥, 𝜂) = −ℎ𝜂 [

𝑑2𝑣

𝑑𝑥2 −
2

𝜒𝑐
⋅

𝑑𝜓𝑓

𝑑𝑥
], (27) 

𝛾𝑥𝑦
(𝑐)(𝑥, 𝜂) =

2

𝜒𝑐
⋅ 𝜓𝑓(𝑥), (28) 

𝜎𝑥
(𝑐)(𝑥, 𝜂) = −𝐸𝑓ℎ ⋅ 𝜂 [

𝑑2𝑣

𝑑𝑥2 −
2

𝜒𝑐
⋅

𝑑𝜓𝑓

𝑑𝑥
] ⋅ 𝑓𝑐(𝜂), (29) 

𝜏𝑥𝑦
(𝑐)(𝑥, 𝜂) =

𝐸𝑓

1+𝜈
⋅

1

𝜒𝑐
⋅ 𝑓𝑐(𝜂) ⋅ 𝜓𝑓(𝑥). (30) 
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3. THREE-POINT BENDING OF THE SANDWICH BEAM 

The bending moment, according to its definition, for the 
subject sandwich beam is of the form  

𝑀𝑏(𝑥) = 𝑏ℎ2 [𝐽𝑀
(𝑢𝑓)

(𝑥) + 𝐽𝑀
(𝑐)(𝑥) + 𝐽𝑀

(𝑙𝑓)
(𝑥)], (31) 

where: 𝐽𝑀
(𝑢𝑓)

(𝑥) = ∫ 𝜂𝜎𝑥
(𝑢𝑓)

(𝑥, 𝜂)𝑑𝜂
−𝜒𝑐 2⁄

−1 2⁄
,  

𝐽𝑀
(𝑐)(𝑥) = ∫ 𝜂𝜎𝑥

(𝑐)(𝑥, 𝜂)𝑑𝜂
𝜒𝑐 2⁄

−𝜒𝑐 2⁄
, 

𝐽𝑀
(𝑙𝑓)

(𝑥) = ∫ 𝜂𝜎𝑥
(𝑙𝑓)

(𝑥, 𝜂)𝑑𝜂
1 2⁄

𝜒𝑐 2⁄
.  

Substituting the expressions (6), (14) and (28) into the above 
expression (31), after integration one obtains the equation  

𝐶𝑣𝑣
𝑑2𝑣

𝑑𝑥2 − 𝐶𝑣𝜓
𝑑𝜓𝑓

𝑑𝑥
= −12

𝑀𝑏(𝑥)

𝐸𝑓𝑏ℎ3, (32) 

where dimensionless coefficients: 𝐶𝑣𝑣 = 1 − 𝜒𝑐
3 + 12𝐽𝑐2, 

𝐶𝑣𝜓 = 3 (1 − 𝜒𝑐
2 +

8

𝜒𝑐
𝐽𝑐2), 𝐽𝑐2 = ∫ 𝜂2𝑓𝑐(𝜂)𝑑𝜂

𝜒𝑐 2⁄

−𝜒𝑐 2⁄
.  

The elastic strain energy  

𝑈𝜀,𝛾 =
1

2
𝐸𝑓𝑏ℎ ∫ [𝐽𝑈

(𝑢𝑓)
(𝑥) + 𝐽𝑈

(𝑐)(𝑥) + 𝐽𝑈
(𝑙𝑓)

(𝑥)] 𝑑𝑥
𝐿

0
, (33) 

where: 𝐽𝑈
(𝑢𝑓)

(𝑥) = ∫ [𝜀𝑥
(𝑢𝑓)

(𝑥, 𝜂)]
2

𝑑𝜂
−𝜒𝑐 2⁄

−1 2⁄
,  

𝐽𝑈
(𝑐)(𝑥) =

∫ {[𝜀𝑥
(𝑐)(𝑥, 𝜂)]

2
+

1

2(1+𝜈)
[𝛾𝑥𝑦

(𝑐)(𝑥, 𝜂)]
2

} 𝑓𝑐(𝜂)𝑑𝜂
𝜒𝑐 2⁄

−𝜒𝑐 2⁄
, 

𝐽𝑈
(𝑙𝑓)

(𝑥) = ∫ [𝜀𝑥
(𝑙𝑓)

(𝑥, 𝜂)]
2

𝑑𝜂
1 2⁄

𝜒𝑐 2⁄
.  

Substituting the expressions (5), (13), (27) and (28) into the 
above expression (33), after integration the elastic strain energy is 
of the form  

𝑈𝜀,𝛾 =
1

24
𝐸𝑓𝑏ℎ3 ∫ [𝐶𝑣𝑣 (

𝑑2𝑣

𝑑𝑥2)
2

− 2𝐶𝑣𝜓
𝑑2𝑣

𝑑𝑥2

𝑑𝜓𝑓

𝑑𝑥
+

𝐿

0

𝐶𝜓𝜓 (
𝑑2𝜓𝑓

𝑑𝑥2 )
2

+ 𝐶𝜓

𝜓𝑓
2(𝑥)

ℎ2 ] 𝑑𝑥, (34) 

where dimensionless coefficients: 𝐶𝜓𝜓 = 12 (1 − 𝜒𝑐 +
4

𝜒𝑐
2 𝐽𝑐2),  

𝐶𝜓 =
6

1+𝜈

4

𝜒𝑐
2 𝐽𝑐0, 𝐽𝑐0 = ∫ 𝑓𝑐(𝜂)𝑑𝜂

𝜒𝑐 2⁄

−𝜒𝑐 2⁄
.  

The work of the load  

𝑊 = ∫ 𝑇(𝑥)
𝑑𝑣

𝑑𝑥
𝑑𝑥

𝐿

0
,  (35) 

where 𝑇(𝑥) – shear force.  

Taking into account the principle of stationary total potential 

energy 𝛿(𝑈𝜀,𝛾 − 𝑊) = 0, two differental equations of 

equilibrium of this sandwich beam is obtained in the following 
form:  

𝐶𝑣𝑣
𝑑4𝑣

𝑑𝑥4 − 𝐶𝑣𝜓
𝑑3𝜓𝑓

𝑑𝑥3 = −
12

𝐸𝑓𝑏ℎ3

𝑑𝑇

𝑑𝑥
, (36) 

𝐶𝑣𝜓
𝑑3𝑣

𝑑𝑥3 − 𝐶𝜓𝜓
𝑑2𝜓𝑓

𝑑𝑥2 + 𝐶𝜓
𝜓𝑓(𝑥)

ℎ2 = 0. (37) 

The equations (32) and (36) are equivalnet, then, equations 
(32) and (37) are fundamental in the beam bending studies. Thus, 

after simply transformation of these two equations, the one 
differential equation of the form is obtained  

𝑑2𝜓𝑓

𝑑𝑥2 − 𝛼2 𝜓𝑓(𝑥)

ℎ2 = −12
𝐶𝑣𝜓

𝐶𝑣𝑣𝐶𝜓𝜓−𝐶𝑣𝜓
2

𝑇(𝑥)

𝐸𝑓𝑏ℎ3, (38) 

where 𝛼 = √
𝐶𝑣𝑣𝐶𝜓

𝐶𝑣𝑣𝐶𝜓𝜓−𝐶𝑣𝜓
2  – dimensionless coefficient.  

The three-point bending problem of this sandwich beam is 
analyzed in detail. The scheme of the beam of length 𝐿 is shown 
in Fig. 4.  

 
Fig. 4. Scheme of the three-point bending of the beam  

The scheme of the left end-part of this beam with reactions is 
shown in Fig. 5.  

 
Fig. 5. Scheme of reactions in left end-part of this beam  

Thus, the shear force and the bending moment in the left part 
of this beam (0 ≤ 𝑥 ≤ 𝐿 2⁄ ) are as follows: 

𝑇(𝑥) =
1

2
𝐹,      𝑀𝑏(𝑥) = −𝑀𝐴 +

1

2
𝐹𝑥. (39) 

Consequently, the differential equation (38) with consideration 
of the expression (39a), in the dimensionless coordinate 𝜉 =
𝑥 𝐿⁄ , is in the following form  

𝑑2𝜓𝑓

𝑑𝜉2 − (𝛼𝜆)2 ⋅ 𝜓𝑓(𝜉) = −6
𝐶𝑣𝜓

𝐶𝑣𝑣𝐶𝜓𝜓−𝐶𝑣𝜓
2 𝜆2 𝐹

𝐸𝑓𝑏ℎ
, (40) 

where 𝜆 – relative length of the beam.  

The solution of this differential equation for the left part of this 

beam (0 ≤ 𝜉 ≤ 1 2⁄ ) is as follows  

𝜓𝑓(𝜉) = 𝜓̅𝑓(𝜉) ⋅
𝐹

𝐸𝑓𝑏ℎ
 (41) 

where  

𝜓̅𝑓(𝜉) = 6 {1 −
sinh(𝛼𝜆𝜉)+sinh[(1−2𝜉)𝛼𝜆 2⁄ ]

sinh(𝛼𝜆 2⁄ )
}

𝐶𝑣𝜓
2

𝐶𝑣𝑣𝐶𝜓
.  (42) 
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This function satisfy following conditions: ψ̅f(0) = 0 – 

clamped end, and ψ̅f(1 2⁄ ) = 0 – middle of the beam.  
The equation (32) with consideration of the expression (39b), 

in the dimensionless coordinate 𝜉 = 𝑥 𝐿⁄ , was written in the 
following form  

𝐶𝑣𝑣
𝑑2𝑣̅

𝑑𝜉2 = 𝐶𝑣𝜓
𝑑𝜓𝑓

𝑑𝜉
+ 6(2𝑀̅𝐴 − 𝜉)𝜆2 𝐹

𝐸𝑓𝑏ℎ
, (43) 

where: 𝑣̅(𝜉) = 𝑣(𝜉) 𝐿⁄  – relative deflection of the beam, 

𝑀̅𝐴 = 𝑀𝐴 (𝐹𝐿)⁄  – dimensionless reaction moment.  

This equation after integration is in the form  

𝐶𝑣𝑣
𝑑𝑣̅

𝑑𝜉
= 𝐶3 + 𝐶𝑣𝜓𝜓𝑓(𝜉) + 6 (2𝑀̅𝐴𝜉 −

1

2
𝜉2) 𝜆2 𝐹

𝐸𝑓𝑏ℎ
, (44) 

where the integration constant from the condition 𝑑𝑣̅ 𝑑𝜉⁄ ]0 = 0 

is equal to zero 𝐶3 = 0, and the dimensionless reaction moment 

from the condition 𝑑𝑣̅ 𝑑𝜉⁄ ]1 2⁄ = 0 is equal 𝑀̅𝐴 = 1 8⁄ .  

Consequently, integrating this equation and taking into 
account the function (41) and the boundary condition 𝑣̅(0) = 0, 
one obtains the function of the relative deflection of the beam  

𝑣̅(𝜉) = 𝑣̃(𝜉) ⋅
𝐹

𝐸𝑓𝑏ℎ
, (45) 

where  

𝑣̃(𝜉) = {6[𝜉 − 𝜙𝜓(𝜉)]
𝐶𝑣𝜓

2

𝐶𝑣𝑣𝐶𝜓

1

𝜆2 +
1

4
(3𝜉2 − 4𝜉3)}

𝜆2

𝐶𝑣𝑣
 (46) 

and 𝜙𝜓(𝜉) =
cosh(𝛼𝜆𝜉)−1+cosh(𝛼𝜆 2⁄ )−cosh[(1−2𝜉)𝛼𝜆 2⁄ ]

𝛼𝜆 sinh(𝛼𝜆 2⁄ )
.  

Thus, the relative maximum deflection of the beam is as 
follows  

𝑣̅𝑚𝑎𝑥 = 𝑣̅ (
1

2
) = 𝑣̃𝑚𝑎𝑥 ⋅

𝐹

𝐸𝑓𝑏ℎ
, (47) 

where the dimensionless maximum deflection  

𝑣̃𝑚𝑎𝑥 = (1 + 𝐶𝑠𝑒)
𝜆2

16𝐶𝑣𝑣
, (48) 

and the shear coefficient  

𝐶𝑠𝑒 =
48

𝜆2 [1 − 4
cosh(𝛼𝜆 2⁄ )−1

𝛼𝜆 sinh(𝛼𝜆 2⁄ )
]

𝐶𝑣𝜓
2

𝐶𝑣𝑣𝐶𝜓
. (49) 

The shear stresses (30) in the core with consideration of the 
expression (41) is in the following form  

𝜏𝑥𝑦
(𝑐)(𝜉, 𝜂) = 𝜏𝑥̅𝑦

(𝑐)(𝜉, 𝜂) ⋅
𝐹

𝑏ℎ
, (50) 

where the dimensionless shear stress  

𝜏𝑥̅𝑦
(𝑐)(𝜉, 𝜂) =

1

(1+𝜈)𝜒𝑐
⋅ 𝑓𝑐(𝜂) ⋅ 𝜓̅𝑓(𝜉). (51) 

4. SAMPLE DETAILED CALCULATIONS 

Example calculations are carried out for three selected 

structures of sandwich beam of following data: 𝜆 = 15, 𝑒𝑐 =
1 20⁄ , 𝜈 = 0.3, 𝜒𝑐 = 18 20,⁄ 17 20⁄ , 16 20⁄ . The graph of 
the dimensionless displacement function (42) for selected 

structure of sandwich beam 𝜒𝑐 = 18 20  ⁄ is shown in Fig. 6.  

 
Fig. 6. The graph of the dimensionless displacement function 𝜓̅𝑓(𝜉)  

The results of this calculations: values of the constant 𝐶0, 
dimensionless displacement function 𝜓̅𝑓(1 4⁄ ), shear coefficient 

𝐶𝑠𝑒 , and the dimensionless maximum deflection 𝑣̃𝑚𝑎𝑥 are 
specified in Tab. 1.  

Tab. 1. The results of calculations of the selected structures of beam 

𝜒𝑐  18 20  ⁄  17 20  ⁄  16 20  ⁄  

𝐶0 0.21375 0.29484375 0.36 

𝜓̅𝑓(1 4⁄ ) 10.730 10.997 10.915 

𝐶𝑠𝑒 0.248714 0.349100 0.433171 

𝑣̃𝑚𝑎𝑥 56.507 45.361 39.169 

Moreover, the results of these calculations regarding the 
subject function (25) of variability of Young’s modulus along the 
thickness of the core and the dimensionless shear stress (51) for 

𝜉 = 1 4⁄  are presented graphically in Fig. 7 and Fig. 8.  

 
Fig. 7.  Graphs of the function fc(η) for the selected structures of the   

beam 

 

Fig. 8.   Graphs of the function τ̅xy
(c)

(
1

4
, η) for the selected structures of 

the beam 
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5. CONCLUSIONS 

The research presented above, the following conclusions: 
– the deformation shape of a planar cross section of a typical 

sandwich beam is exactly consistent with the “broken line” 
theory, when the Young’s modulus variable along the core 
thickness in accordance with the function in the form (25),  

– the distribution-graph of the shear stress along the core 
thickness is non-linear (Fig. 8). 
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